

Product Range Technical Information

Steam Traps and Valves · Electronic Controls · Automation Special Equipment and Vessels for Heat Recovery

2023

Welcome to the World of GESTRA

The following pages do not simply list all the products we supply. They are the result of more than 120 years of tireless innovation, testing, and refinement. They represent the dedication of GESTRA's engineers over time to create the most efficient, safe, and sustainable steam and condensate systems possible.

The journey to becoming a global leader in steam engineering began in Bremen. That was back in 1902 when Gustav Friedrich Gerdts founded the business near the railway yards of this proudly industrial German city.

Today, the same conviction that innovation is key to improving our success, and yours, remains a bedrock of GESTRA's philosophy.

Of course, the uses for steam have evolved over the years, and alongside that journey, we have always been at the forefront of developing new ways to efficiently manage its progress.

Choosing GESTRA technology for your system requirements does not end with a selection from a catalogue. We work with our customers to develop lasting solutions to improve their processes, giving you access to unrivalled expertise and advice.

When you buy a GESTRA product, it's the synthesis of tradition, reliability, and precision German engineering.

Our Commitment to Sustainability and the Future

Our people are firmly committed to both innovation and safeguarding our planet's future. That is why we're especially proud to hold a Gold rating by Ecovadis, the world's most trusted business sustainability rating organization. That top 5% score reflects our commitment to our colleagues and customers to focus on sustainability as a core principle.

These responsibilities towards the future are laid out in the **One Planet: Engineering with Purpose Strategy.** This comprehensive roadmap lays out GESTRA's targets across six key initiatives

You can discover more about our sustainability initiatives on our website: https://www.gestra.com/sustainability

Our sustainability promise in figures

In 2021, we helped our customers worldwide achieve the following CO2, energy and water savings with just 8 GESTRA product ranges

956,187 Tons CO₂ per year

14,181,397GJ energy per year

4,567,409 m³ water per year

Which is equivalent to

43,463,030Mature trees

159,342Average annual per capita energy consumption

1,827
Olympic swimming pools

Product Range

Steam Traps and Valves

Steam Traps Trap Testing Equipment Drain Modules

Gravity Circulation Checks Screwed Non-Return Valves DISCO Non-Return Valves DISCOCHECK Dual-Plate Check Valves DISCO Swing Check Valves

Return Temperature Control Valves Self-Acting Pressure and Temperature Controllers Control Valves Safety Valves Strainers Stop Valves

Industrial Electronics

- System solutions -

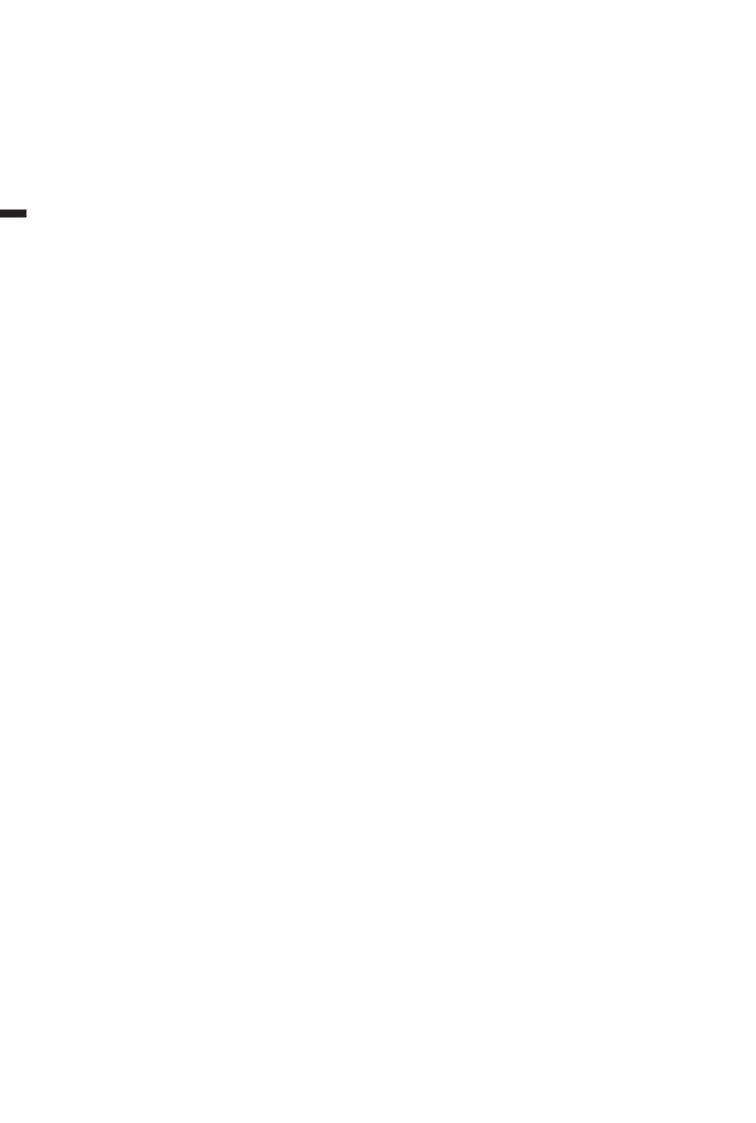
General

Level

Basics, type code
Schematic layout of steam boiler
Old/new equipment at a glance
Type approvals at a glance
The SPECTOR family
SPECTOR*compact*, SPECTOR*module*,
SPECTOR*connect*

Conductivity, continuous boiler blowdown Intermittent boiler blowdown, temperature Oil and turbidity detection Long-distance transmission and parameterization of operating data Open and closed loop control SPECTORcompact, SPECTORmodule SPECTORconnect Conventional SPECTORconnect, SPECTORcom, SPECTORcontrol

Special Equipment and Vessels for Heat Recovery


Condensate Recovery and Vessels for Heat Recovery Desuperheating Plants Steam Regenerators Heat-Transfer Installations Feedwater Deaerating Plants Mixing Cooler (Blowdown Receiver) Condensate Dampening Pots Steam Driers and Purifiers Vessels

GESTRA Academy
Tools for Design Engineers
Users & Operators
General Information

Mobile Testing Station

Programs & sizing software, CAD drawings
Information on ATEX Directive
Information on Pressure Equipment Directive (PED)

Technical Literature
Technical Documentation
Material Reference Chart, Steam Tables
Design of GESTRA Valves

GESTRA Steam Traps and Steam Trap Monitoring Equipment

	Page
Steam Trap Selection	5
Thermostatic Steam Trap BK with Duo S.S. (Bimetallic) Regulator	6 – 7
Thermostatic Steam Trap MK with Membrane Regulator	8 – 9
Ball Float Trap UNA, UNA Special	10 – 16
Stainless Steel Traps MK, UNA	see MK, UNA
Thermodynamic Steam Trap DK	17 – 18
Steam Traps for Sterile and Aseptic (SIP) Applications SMK	19 – 20
Steam Traps for Special Applications Condensate Drain Valves AK Steam Trap with Adjustable Discharge Temperature UBK Steam Trap for Low-Pressure Steam Heating Plants MK Steam Traps for Large Condensate Flowrates TK, GK	21 – 22 21 – 22
Steam Traps for Air-Venting BK, MK	see BK, MK
Steam Trap Units for UNIVERSAL (Swivel) Connectors BK, MK, DK	23
UNIVERSAL (Swivel) Connector Units TS, UC, UCY	24 – 25
Compressed-Air Draining Condensate Ball-Float Traps for Draining Condensate from Compressed-Air and Other Gas Lines UNA	26
Pump Steam Trap, Compact Condensate Lifter UNA	27
Why Testing Steam Traps	28
Steam Trap Monitoring Equipment VK, VKE, VKP	29 – 30
Drain Module QuickEM, QuickEM Control	31 – 33
Manifold GMF	34
Connecting Kit	35
Questionnaire for preparing offers for GESTRA Steam Traps	37

The latest member of the UNA 4 family: UNA 47

Proven reliability and new flexibility added to PN 63

The new UNA 47 ball-float steam trap is the successor to the proven UNA 27h. The new model now features flexible flow direction change. Just like with the UNA 4, the flow direction can be adjusted to the installation situation subsequently. The UNA 47 is available in nominal sizes DN 15 to DN 50 to cover a broader range of nominal sizes than its predecessor. The duplex version of the UNA 47 features a bimetallic vent, making the trap suitable even for applications with superheated steam. In terms of performance, the UNA 47 easily matches its predecessor! The steam trap's weight has been reduced, improving ease of handling when installing and during maintenance.

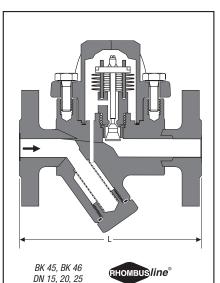
Versions:

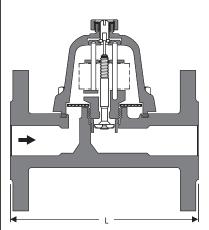
- Body/cover material: 1.5415/1.5419
- Nominal sizes: DN 15, DN 20, DN 25, DN 40, DN 50
- Types of connection:
 Flange EN1092-1 PN 63; flange ASME
 B 16.5 Class 400/(600); socket weld
 ends EN/ASME, socket weld ends via
 transition pieces EN/ASME, butt-weld
 ends via transition pieces EN/ASME
- Differential pressures: orifice 16, orifice 28, orifice 45

Special features:

- Control unit type: with or without thermal venting thanks to robust bimetallic regulator (Duplex/Simplex) (UNA 47 MAX only available with regulator membrane capsule)
- Flow directions: R L-R, R R-L, F (can be subsequently adapted)
- Options:
 - Special installation length for replacing an UNA 27h
 - ◆ Float-lifting lever
 - ◆ Manual vent valve for Duplex version

For steam and energy management, we are right on target


Steam Trap Selection


Not all steam trap types are equally suitable for a given application. Depending on the operating conditions and service in question, one or more systems will be particularly well suited.

The following table contains 16 criteria for steam trap selection based on the operation of the plant and the specific requirements on the part of the plant owner.

Ratings:						Stean	n trap typ	es	
1 = Excell 2 = Good 3 = Fair o	ent r conditional ccommended, unsuitable		Dinetallo est with Italy to the estates	The man is with with 17 to 17	memore sum mit	Programmic Ball Ross	Ball float	Pum Simpley Control	Please note
 Criteria									Please note
1. Operation with	Condensate from steam	1	1	1	1	1	1	1	For "cold" condensates or condensates with a
different condensates	Condensate from compressed air		_	_	-	_	1	1	saturation curve deviating from that of water only float traps featuring Simplex control (wit-
	Condensate, distillate from chemical products	-	_	_	_	_	1	3*)	hout thermal venting) can be used. *) Only for fluids of group 2 (not dangerous fluids)
2. Different modes of operation	Continuous operation: Constant formation of condensate; flowrate and pressure vary	2	1	1	1	1	1	1	
	Discontinuous operation: Intermittent formation of condensate; flowrate and pressure vary strongly	2	1	1	2	1	3*)	1	*) e. g. air venting difficulties
	Any operation: Heat exchanger may be controlled on the steam side	3**)	2	2	2*)	1	3*)	1	*) Air venting difficulties, **) With partial load (reduced differential pressure) flowrate possibly not sufficient
3. Operation with	Up to approx. 30 % of upstream pressure	1	1	1	1	1	1	1	
back pressure	From 30 % to 60 % of upstream pressure	3*)	1	1	1	1	1	1	*) Possibly readjustment required
	> 60 % of upstream pressure	3*)	1	1	3	1	1	1	*) Possibly readjustment required
	> 100 % of upstream pressure	-	-	-	-	-	-	1	
4. Sensitivity to dirt	Very dirty condensate	1	1	1	1	1	1	1	
5. Air-venting	Automatic	1	1	1	2	1	3*)	1	*) Manual air-venting
6. Condensate discharge at definite temperatures	Condensate temperature nearly boiling temperature	2*)	2**)	2**)	1	1	1	1	This may apply to small heat exchangers (e. g. laboratory equipment) *) Possibly readjustment required **) Might require special membrane regulator
iomporataros	Condensate undercooling approx. 30 K (required)	1*)	1**)	1**)	_	_	-	_	*) with U-type regulator or by readjustment **) with U-type capsule
	Condensate undercooling adjustable	2*)	-	-	-	_	-	-	*) By a corresponding readjustment reduction in flowrate; if possible use steam trap with adjustable discharge temperature UBK
7. Frost resistance		1	1	1	1	1*)	3*)	3	*) Only ensured with V-type design
8. Condensate	Intermittent condensate formation	1	1	1	2	1	1	1	
discharge without	Reduced condensate formation (< 10 kg/h)	1	1	1	2	1	1	1	
loss of live steam	Continuous condensate formation (> 10 kg/h)	1	1	1	1	1	1	1	
9. Resistance to wa	terhammer	1	1*)	1*)	1	3*)	3*)	1	*) Built-in non-return valve = 1
10. Resistance to wa	terhammer	1	1*)	1*)	-	-*)	-*)	1	*) Built-in non-return valve = 1
11. Application in vacuum		3	_	_	2	_	1	1	
12. Installation in any position		1	1	1	1	-*)	-*)	-	*) UNA 1, UNA 4 can be converted
13. Ease of maintenance		1	1	1	1	1	1	1	
14. Service life of co	ntrol unit	1	2	2	2	1	1	1	
15. Application with	superheated steam	1	3	3	2	1/3*)	1	1	*) UNA 1x, 2x, 4x
16. Sterile and asept	ic (SIP) applications	_	-	1	_	_	-	_	

BK 15, DN 40, 50

Features of the BK series

- Robust regulator for roughest operating conditions (unaffected by waterhammer and frost)
- Suitable for superheated steam applications
- Automatic air-venting (steam trap can be used for thermal air-venting in steam systems)
- Installation in any position (horizontal and vertical lines)
- Stage nozzle acts as non-return valve

- · Stainless steel internals
- · Repairable in-line
- Base bushing ensures positive metal-to-metal sealing between body and regulator.
- Up to ∆p 275 bar g
- Optional extra: Integrated steam trap monitoring for BK 45 (temperature or steam loss)

Application

For open-loop controlled heating processes. Draining of

- saturated steam lines
- superheated steam lines
- steam tracers

Can also be used for thermal air-venting

Air-venting

Steam trap for thermostatic air-venting with bimetallic regulator

The thermostatic steam traps with corrosion-resistant Duo S.S. (bimetallic) regulator of the BK series can also be used for air-venting.

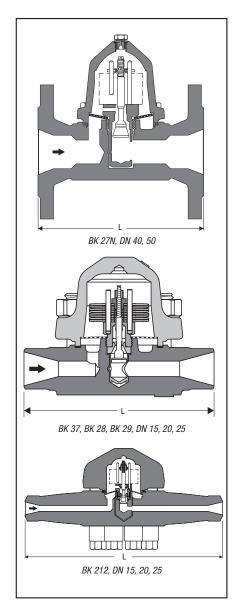
Application

Thermostatic steam trap for automatic air-venting and discharge of non-condensable gases and steam/air mixtures from steam lines and heat exchangers. Special adjustment might be required.

Pressure/Temperature Ratings

Туре	PN / Class	ΔPMX	Ma	nterial	N	lax. Pres	sure / Temp. R	ating¹)
			EN	ASTM	PMA	TMA	p.	/T
		[bar]			[bar]	[°C]	[bar	/°C]
BK 45. BK 45U ³)	PN 40	22	1.0460	A105	40.0	420	27.6 / 300	17.1 / 420
BK 45. BK 45U ³)	Class 300	22	1.0460	A105	51.1	425	39.8 / 300	28.8 / 425
BK 45-LT	Class 300	22	-	SA350 LF2	51.1	425	51.1 / -464)	28.8 / 4254)
BK 15 DN 40. 50	PN 40	22	1.0460	A105	40.0	420	27.6 / 300	17.1 / 420
BK 15 DN 40. 50	Class 300	22	1.0460	A105	51.1	425	39.8 / 300	28.8 / 425
BK 46	PN 40	32	1.5415	A182-F1 ²)	40	450	39.0 / 250	27.6 / 450
BK 46	Class 300	32	1.5415	A182-F1 ²)	51.7	450	41.1 / 250	29.8 / 450
BK 37	PN 63/100	45	1.5415	A182-F1 ²)	100	530 ⁴)	100.0 / 4504)	30.9 / 5304)
BK 27N DN 40. 50	PN 63	45	1.5415	A182-F1 ²)	63	530	54.0 / 300	13.0 / 530
BK 28	PN 100	85	1.5415	A182-F12)	100	5304)	100.0 / 4504)	30.9 / 5304)
BK 29	PN 160	110	1.7335	A182-F12	160	540 ⁴)	131.5 / 4504)	44.5 / 5404)
BK 212	PN 630	275	1.7383	A182-F22	6304)	540 ⁴)	447.0 / 5004)	261.0 / 5404)
BK 212-F91	-	275	1.4903	A182-F91	775 ⁴)	5804)	607.0 / 5004)	205.0 / 5804)
BK 212-S	PN 630	275	1.7383	A182-F22	630	580	289.0 / 5404)	163.0 / 5804)
BK 212-F91-SD	-	275	1.4903	A182-F91	775	625	473.0 / 5754)	255.0 / 6254)
BK 212-F92-SD	-	275	1.4901	A182-F92 ²)	800	650	418.0 / 6004)	207.0 / 6504)
BK 37-ASME	Class 400/600	45	-	A182-F12	103.44)	5004)	85.7 / 3004)	42.8 / 5004)
BK 28-ASME	Class 600	85	-	A182-F12	103.44)	5004)	85.7 / 3004)	42.8 / 5004)
BK 29-ASME	Class 900	110	-	A182-F12	155.1	540 ⁴)	101.4 / 4504)	40.2 / 5404)
BK 212-ASME	Class 2500	275	-	A182-F22	4304)	580 ⁴)	235.0 / 5004)	81.0 / 5804)

Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.
 For full details on limiting conditions depending on end connection and type of regulator see data sheet.


 $^{^{\}rm 2})\,$ Material complies with EN and ASTM requirements.

³⁾ Opening undercooling approx. 30 K.

⁴⁾ Only applicable for traps with butt-weld (BW) or socket-weld (SW) ends DN 25. Note that limits will be lower for traps with other dimensions or flanged end connections.

Thermostatic Steam Traps BK with Duo Stainless Steel (Bimetallic) Regulator PN 40 - PN 630

Available End Connections and Overall Lengths in mm

Туре	Connection	DN 15 [¹ / ₂ "]	DN 20 [³ / ₄ "]	DN 25 [1"]	DN 40 [1 ¹ /2"]	DN 50 [2"]
BK 45	Flanged EN PN 40	150	150	160	230	230
RHOMBUS/line®	Flanged ASME 1501)	150	150	160	230	230
DN 15 - 25	Flanged ASME 3001)	150	150	160	230	230
BK 15	Screwed sockets	95	95	95	130	230
DN 40, 50	Socket-weld (SW)	95	95	95	130	230
	Butt-weld (BW)	200	200	200	250	250
BK 46	Flanged EN PN 40	150	150	160	_	-
RHOMBUS/line®	Flanged ASME 300	150	150	160	_	_
	Screwed sockets	95	95	95	-	-
	Socket-weld (SW)	95	95	95	_	_
BK 27N	Flanged EN PN 40	_	_	-	230	230
DN 40,50	Flanged EN PN 63	-	-	-	260	300
	Flanged ASME 400/600	-	-	-	241	292
	Socket-weld (SW)	-	_	-	180	180
	Butt-weld (BW)	-	-	-	180	180
BK 37	Flanged EN PN 63/100	210	230	230	_	-
BK 28	Socket-weld (SW)	160	160	160	-	-
	Butt-weld (BW)	160	160	160	_	_
BK 29	Flanged EN PN 160	210	-	230	-	-
	Socket-weld (SW)	160	160	160	-	_
	Butt-weld (BW)	160	160	160	-	-
BK 212	Butt-weld (BW)	330	330	330	-	-
Series	Socket-weld (SW)	330	330	330	-	-
BK 37-ASME	Flanged ASME 400/600	230	230	230	-	-
	Socket-weld (SW)	160	160	160	_	_
	Butt-weld (BW)	160	160	160	-	
BK 28-ASME	Flanged ASME 400/600	230	230	230	-	_
	Socket-weld (SW)	160	160	160	-	-
	Butt-weld (BW)	160	160	160	-	-
BK 29-ASME	Flanged ASME 900/1500	230	230	254	-	-
	Socket-weld (SW)	200	200	200	-	_
	Butt-weld (BW)	200	200	200	-	-

¹⁾ BK 45 with ASME flanges: overall length 172 mm available on request.

Capacity Charts

The charts show the maximum hot condensate capacities.

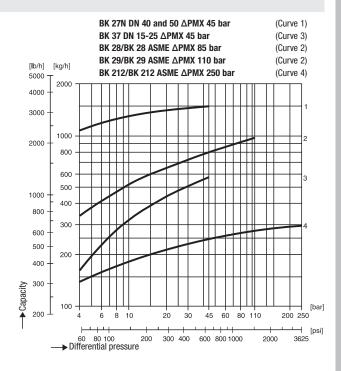
BK 45 DN 15-25 APMX 22 bar (Curve 1) BK 46 DN 15-25 APMX 32 bar (Curve 1) [lb/h] [kg/h] BK 15 DN 40 and 50 APMX 22 bar (Curve 2) 10000 8000 7 4000 3000 6000-2000 4000-3000 1000 2000-600 1000 400 600+ 300 200 400 300-100 60 100 60 30 20 40 30 4 5

3

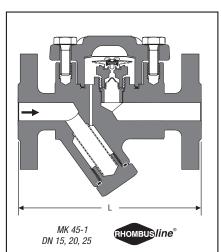
30 40

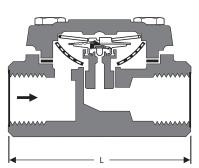
20

► Differential pressure

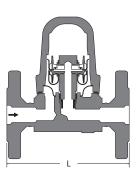

6 8 10

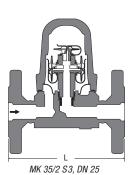
60 80 100


22 32


200

300 465 [psi]





MK 35/31, DN 10, 15

MK 35/2 S, DN 25

Features of the MK series

- · Very sensitive response characteristic
- Function is not impaired by high back pressure
- Automatic air-venting (trap can be used for thermal air-venting in steam systems)
- Installation in any position (horizontal and vertical lines)
- High hot-water capacities even with low differential pressures

- With tandem seat (double sealing) for low condensate flowrates
- Built-in non-return valve (only MK 45)
- Stainless steel internals (corrugated membrane of Hastelloy)
- Design "U" with undercooling capsule: utilization of a certain amount of sensible heat by banking-up of condensate, decreasing the amount of flash steam
- Optional extra: Integrated condensate monitoring for MK 45 (temperature or steam loss)

Application

Туре	
MK 45-1 (HOMBUS/line* MK 35/31 1)	With tandem seat (double sealing) For low condensate flowrates, steam-tracing, steam-line drainage, air-venting
MK 45-2 MK 35/32 ¹)	With single seat For medium condensate flowrates, steam-tracing, drainage of heat exchangers, air-venting
MK 25/2 ¹) MK 25/2 S ¹) MK 35/2 S ¹) MK 35/2 S3 ¹)	With single seat For large condensate flowrates, drainage of heat exchangers
MK 36/51 ¹) MK 36/52 ¹)	With tandem seat (double sealing) – with flat gasket For small/large condensate flowrates, steam tracing, steam-line drainage, venting and vacuum-breaking. Also suitable for food, biological and pharmaceutical applications.
MK 45 A-1 MK 45 A-2 @HOMBUS/line*	For small and large condensate flowrates; steam-tracing, steam-line drainage, air-venting

¹⁾ Can also be used for vacuum breaking (aerating).

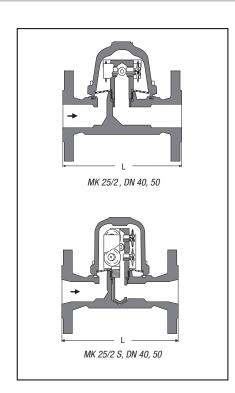
Air Venting

Steam Trap for Thermostatic Air-Venting with Membrane Regulator

The thermostatic steam traps with membrane regulators of the MK series can also be used for air-venting.

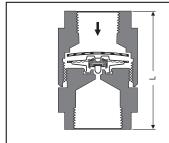
Application

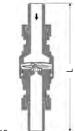
Thermostatic steam trap for automatic air-venting and discharge of non-condensable gases and steam/air mixtures from steam lines and heat exchangers.


A special type of membrane regulator capsule might be required.

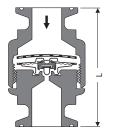
Pressure/Temperature Ratings

Туре	PN / Class	∆РМX	Ма	Material Max. Pressu			ure/Temp. Ra	ating¹)
			EN	ASTM	PMA	TMA	p/T	
		[bar]			[bar]	[°C]	[bai	/°C]
MK 35/31, MK 35/32	PN 25	21	1.0460	A105	25.0	400	18.6 / 225	14.4 / 400
MK 45-1, MK 45-2	PN 40	32	1.0460	A105	40.0	420	27.6 / 300	17.1 / 420
MK 45-1, MK 45-2	Class 300	32	1.0460	A105	51.1	425	39.8 / 300	28.8 / 425
MK 35/2 S, DN 25 MK 35/2 S3, DN 25	PN 40	32	1.0460	A105	40.0	420	27.6 / 300	17.1 / 420
MK 25/2, MK 25/2 S, DN 40, 50	PN 40	32	1.0460/ 1.0619	A105/ A216-WCB	40.0	420	27.6 / 300	17.1 / 420
MK 36/51, MK 36/52 MK 45 A-1, MK 45 A-2	_	32	1.4301²)	SA479-F304	49.0	400	32.0 / 245	28.0 / 400
MK 45 A-1, MK 45 A-2	PN 40	32	1.4404	A182-F316L	40.0	400	27.6 / 300	25.7 / 4003)
MK 45 A-1, AND	Class 300	32	1.4404	A182-F316L	41.4	400	26.1 / 300	24.3 / 400 ³)


- Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.
 For full details on limiting conditions depending on end connection and type of regulator see data sheet.
- 2) EN material comparable to ASTM material.
- 3) If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

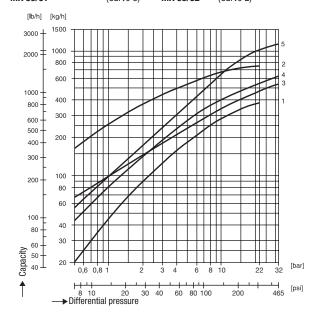


Available End Connections and Overall Length

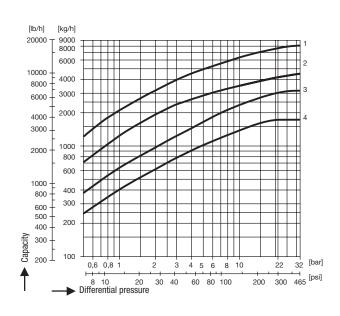

		Overall length (L) in mm							
Туре	Connection	DN 8	DN 10 3/8"	DN 15 1/2"	DN 20 3/4"	DN 25 1"	DN 40 1 ¹ / ₂ "	DN 50 2"	
MK 45-1	Flanged EN PN 40	-	-	150	150	160	-	-	
MK 45-2	Flanged ASME 1501)	_	_	150	150	160	-	_	
MK 45 A-1 STAINLESS	Flanged ASME 3001)	_	_	150	150	160	-	-	
MK 45 A-2 STEEL	Screwed sockets	_	_	95	95	95	_	_	
MK 35/2 S3 only DN 25	Socket-weld (SW)	_	_	95	95	95	-	-	
MK 35/2 S only DN 25	Butt-weld (BW) 2)	_	_	200	200	200	_	-	
MK 35/31	Screwed sockets	-	70	70	-	-	-	-	
MK 35/32	Socket-weld (SW)	_	_	95	-	_	-	-	
MK 25/2 DN 40 – 50	Flanged EN PN 40	-	-	-	-	-	230	230	
MK 25/2 S DN 40 - 50	Flanged ASME 150	_	_	_	_	_	230	230	
	Flanged ASME 300	-	-	-	-	-	230	230	
	Screwed sockets	_	_	_	_	_	130	230	
	Socket-weld (SW)	-	_	-	-	-	130	230	
MK 36/51	Screwed sockets	65	65	65	65	-	-	-	
MK 36/52 STAINLESS STEEL	Union butt-weld nipples ³)	-	-	150	_	-	-	_	
SIEL	Hinged clamp	_	65	65	65	65	-	_	

MK 36/51, DN 8, 10, 15, 20 mm Connection: screwed socket

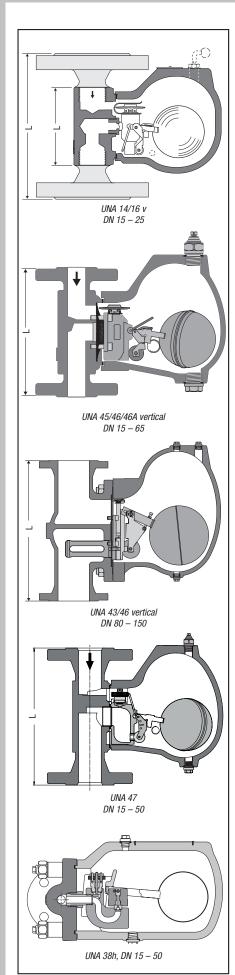
MK 36/51, DN 15 mm Design with union butt-weld nipples


MK 36/51, DN 8, 10, 15, 20 mm Connection: hinged clamp


- 1) MK 45 with ASME flanges: overall length 172 mm available on request.
- 2) Only MK 45
- 3) Made of carbon steel or stainless steel


Capacity Charts

The charts show the maximum hot condensate capacities.


MK 45-1/MK 45A-1	(Curve 4)	MK 35/31	(Curve 1)
MK 45-2/MK 45A-2	(Curve 5)	MK 35/32	(Curve 2)
MK 36/51	(Curve 3)	MK 36/52	(Curve 2)

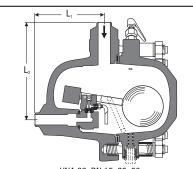
Features of the UNA series

- Unaffected by back pressure and condensate temperature
- No loss of live steam due to continuous water seal at the seat
- No banking-up of condensate even with extreme load and pressure fluctuations
- Particularly well suited for heat exchangers controlled from the steam side
- · Unaffected by dirt
- Automatic thermostatic air-venting (Duplex design)
- Ideal for discharging cold condensates, distillates and condensates derived from chemical products (Simplex design)

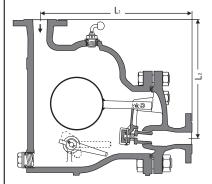
Application

Condensate discharge without banking-up, even at varying operating conditions and back pressure. Automatic air-venting (Duplex design). Also for the discharge of cold condensates and distillates, and for draining gas and compressed air systems (Simplex design).

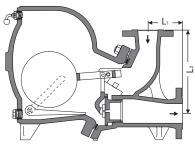
- Repairable in-line
- Thanks to the rolling ball valve only reduced operating forces and small control units are required (compact, lightweight design for large flowrates)
- Internals made from corrosion-resistant stainless steels
- UNA 14, 16, 45, 46, 47, 38: Body can be easily repositioned to convert the flow direction from left to right or vice versa or to change to vertical flow.
- UNA 45, 46 DN 40-65, and UNA 47 DN 40-50 optionally available with MAX controller for very large flowrates (conversion standard -> MAX controller not possible).


Pressure/Temperature Ratings and Designs

Туре	PN / Class	ΔPMX	Ma	terial	М	ax. Pres	sure / Temp. I	Rating ¹)
		[bar]	EN	ASTM	PMA [bar]	TMA [°C]		/ T ·/°C]
UNA 14	PN 25	13	5.3103	-	25.0	350	19.4 / 200	15.0 / 350
UNA 16	PN 40	22	1.0460 / 1.0619	A105 / A216-WCB	40.0	400	25.8 / 300	23.1 / 400
UNA 43	PN 16 / CL125	13	5.1301 / 5.1301	(A126-B) / (A126-B)	16.0 / 13.8	300 / 232	12.8 / 200 9.6 / 200	9.6 / 300 8.6 / 232
UNA 45	PN 40 / CL300	32	1.0460 / 5.3103	A105 / (A395)	40 / 51.1	350 / 345	33.3 / 200 43.8 / 200	25.7 / 350 37.8 / 345
UNA 46 (DN 15 – 65)	PN 40 / CL300	32	1.0460 / 1.0619	A105 / A216WCB	40 / 51.1	420 / 425	27.6 / 300 39.8 / 300	17.1 / 420 28.8 / 425
UNA 46 (DN 80 – 150)	PN 40 / CL300	40	1.0619 / 1.0619	A216WCB / A216WCB	40 / 51.1	450 / 425	27.6 / 300 39.8 / 300	13.1 / 450 28.8 / 425
UNA 47 (DN 15 – 50)	PN 63	45	1.5415	16Mo3	63.0	450	54.0 / 300	43.5 / 450
UNA 38	PN 100	80	1.5415/ 1.7357	A182-F1 / A217-WC6 ²)	100.0	530	69.0 / 450	22.3 / 530
UNA 38 High-temperature	PN 100	80	1.7335/ 1.7357	A182-F12 / A217-WC6 ²)	100.0	530	83.7 / 450	32.4 / 530
UNA 39	PN 160	140	1.7335	A182-F12	160.0	550	104.3 / 500	37.3 / 550
UNA-Special Type 62B	PN 16	16	1.0425	A516Gr-60 ²)	16.0	300	11.3 / 250	10.2 / 300
UNA	PN 25	22	1.0619	A216-WCB	25.0	400	22.0 / 200	14.8 / 400
UNA-Special	PN 63	45	1.5419	A217-WC1 ²)	63.0	450	54.0 / 300	43.5 / 450
AINLES ABL AND	PN 40	22	1.4404 / 1.4408	A182-316L / A351-CF8M	40.0	300	29.3 / 200	25.8 / 300
UNA 46A	PN 40 / CL300	32	1.4404 / 1.4408	F316L / CF8M	40 / 41.4	450 / 425	27.6 / 300 26.1 / 300	25.0 / 450 ³) 23.9 / 425 ³)


- 1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

 For full details on limiting conditions depending on end connection and type of regulator see data sheet.
- 2) ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.
- 3) If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.



UNA 39, DN 15, 25, 50

UNA-Special Type 62B, PN 16 UNA-Special, PN 25, UNA-Special, PN 63

UNA PN 25

Available End Connections and Overall Length

		Overall length (L) in mm						
Туре	Connection	DN 15	DN 20 3/4"	DN 25 1"	DN 40 1½"	DN 50 2"	DN 65 21/2"	
UNA 14h,	Flanged EN PN 25	150	150	160	-	_	-	
14 v	Screwed sockets	95	95	95	-	-	-	
UNA 16h.	Flanged EN PN 40	150	150	160	_	_	-	
16 v,	Flanged ASME CI 150 RF	150	150	160	_	_	_	
UNA 16Ah,	Screwed sockets	95	95	95	-	_	-	
16 Av	Socket-weld (SW)	95	95	95	_	_	-	
	Butt-weld (BW)	200	200	200	-	_	-	
UNA 45	Flanged EN PN 40	150	150	160	230	230	290	
UNA 46	Flanged ASME CI 150 RF	150	150	160	241	267	292	
UNA 46A	Flanged ASME CI 300 RF	150	150	160	241	267	292	
	Screwed ISO-G	95	95	95	165	165	-	
	Screwed socket NPT	95	95	95	165	165	_	
	Socket-weld end (SW) EN/ ASME	95	95	95	165	-	-	
	SW via transition piece EN/ ASME	_	_	_	_	267	-	
	SW via transition piece EN	-	-	-	-	_	292	
	SW via transition piece ASME	_	_	_	_	_	292	
	Butt-weld end via transition piece EN	200	200	200	241	267	292	
	Butt-weld end via transition piece ASME	200	200	200	241	267	292	
UNA 47	Flanged EN PN 63	230	260	260	290	290	-	
	Flanged ASME CI 400/600 RF	241	267	267	292	292	_	
	Socket weld ends EN/ASME	165	165	165	165	_	-	
	Socket-weld ends via transition pieces EN/ASME	-	_	-	_	290	-	
	Butt-weld ends via transition pieces EN	230	260	260	290	290	-	
	Butt-weld ends via transition pieces ASME	230	260	260	290	290	-	
UNA 38	Flanged EN PN 63/PN 100	300	300	300	420	416	-	
	Flanged ASME CI 600 RF	300	300	300	421	427	-	
	Socket-weld / SW via transition pieces	300	300	300	420 ¹)	420 ¹)	-	
	Butt-weld / BW via transition pieces	300	300	300	420 ¹)	420¹)	_	
UNA 39		L ₁ /L ₂		L ₁ /L ₂		L ₁ /L ₂		
	Flansche EN PN 160	215/285	_	230/300	_	245/315	-	
	Flansche ASME CI 900 RF	240/310	-	250/320	-	280/350	-	
	Schweißende	170/240	_	170/240	_	170/240	-	

¹⁾ UNA 38 socket-weld (SW) ends and butt-weld (BW) ends DN 40 + DN 50: 300 mm, SW and BW via transition pieces: 420 mm

Туре	Connection	Length L₁/L₂ in mm							
			DN 65 21/2"	DN 80 3"	DN 100 4"	DN 150 6"			
UNA 43	Flanged EN PN 16 Flanged ASME CL 125 Flanged JIS/KS 10 K	L L L	- - -	450 457 457	450 547 457	500 502 502			
UNA 46	Flanged EN PN 40 Flanged ASME CL 150 Flanged ASME CL 300 Flanged JIS/KS 10K Flanged JIS/KS 20K	L L L	- - - -	450 457 457 457 457	450 457 457 457 457	500 502 502 502 502 502			
UNA-Special Type 62B, PN 16	Flanged EN PN 16	L1 L2			700 595				
UNA PN 25	Flanged EN PN 25	L ₁ L ₂	_	_	140 400				
UNA-Special PN 63	Flanged EN PN 63	L ₁ L ₂	565 400	690 435	700 450	-			

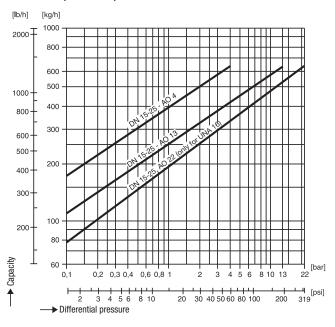
Available Designs

Time	End connection options			Ouitiese (AO) for more differential massesses	Control unit		
Туре	horizontal	vertical	angle pattern	Orifices (AO) for max. differential pressure	Simplex	Duplex	Simplex-R
UNA 14	X ¹)	X ¹)		AO 4, 13	Х	Х	Х
UNA 16, 16A	x1)	x1)		A0 4, 13, 22	Х	Х	Х
UNA 43, UNA 45, UNA 46, UNA 46A	X ¹)	X ¹)		A0 2, 4, 8, 13, 22, 32, 40 ³), 4 MAX'), 8 MAX'), 13 MAX'), 22 MAX'), 32 MAX')	х	х	
UNA 47	X ¹)	X ¹)		AO 16, 28, 45 4 MAX*), 8 MAX*), 13 MAX*), 22 MAX*), 32 MAX*)	х	х	
UNA 38	x1)	x ¹)		AO 50, (64), 80, 80 MAX	Х	Х	
UNA 39			х	AO 80, 110, 140, 140 MAX	Х		
UNA-Special Type 62B, PN 16			х	A0 2, 3.5, 5, 10, 16	X ²)		
UNA PN 25			х	A0 2, 3.5, 5, 8, 12, 16, 22	X ²)		
UNA-Special PN 63			х	A0 16, 22, 32, 40, 45	X ²)		

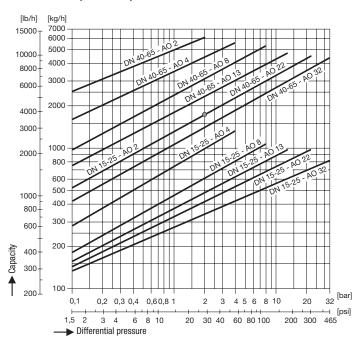
¹⁾ Connection orientation can be changed on site, trap body for horizontal-right available

Simplex: Float control (without thermostatic bellows)
Duplex: Flow control + automatic air-venting
Simplex-R: Float control + inner vent pipe

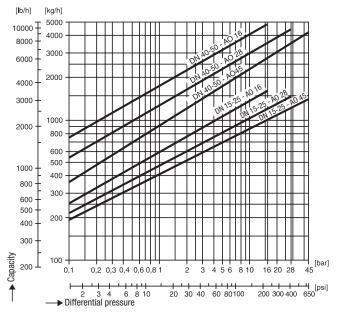
Optional Items for Ball-Float Traps

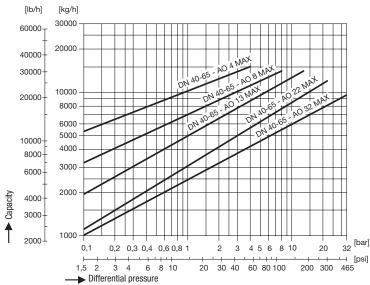

Item	Туре
Sightglass cover	UNA 45
Cover for installing electrodes	UNA 45
Float lifting lever with gasket	UNA 43, 45, 46, 46 A, 47, 38
Vent valve with gasket (for Duplex design)	UNA 43, 45, 46, 46 A, 47, 38
Inner bypass (adjustable)	UNA 45, 46, 46 A

²⁾ Simplex: Flow control + hand vent valve + float lifting lever 3) DN 80, 100, 150 *) DN 40, 50, 65, UNA 47 nur DN 40, 50

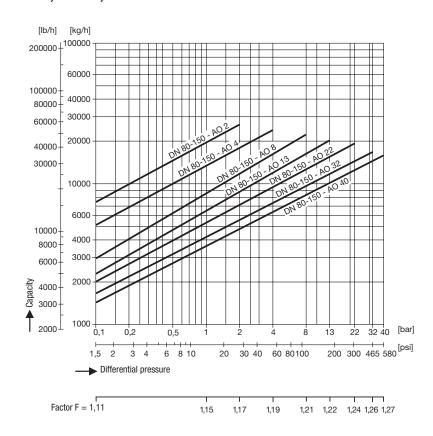


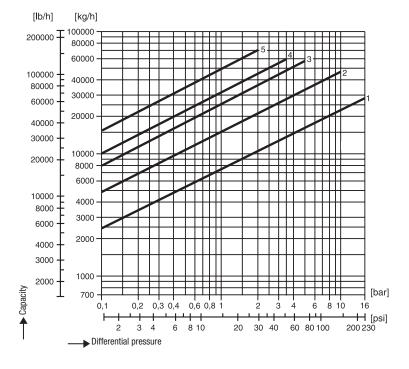
The charts show the maximum hot condensate capacities for the range of float-controlled orifices (AO) and sizes available.


UNA 14, UNA 16, UNA 16A


UNA 45, UNA 46, UNA 46A

UNA 47

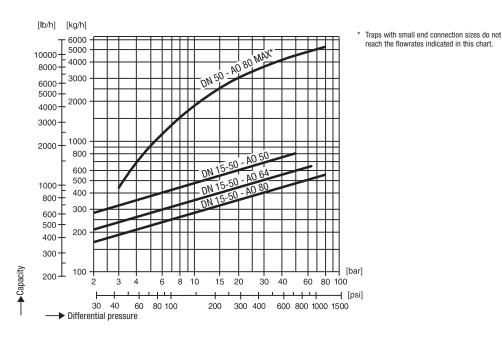

UNA 45 MAX, UNA 46 MAX, UNA 46A MAX, UNA 47 MAX



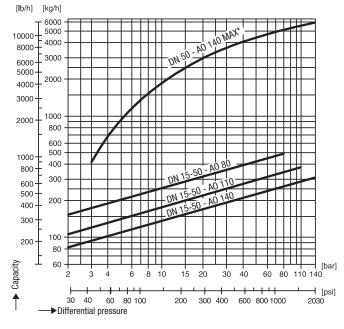
The charts show the maximum hot condensate capacities for the range of orifices (AO) and sizes available.

UNA 43, UNA 46, DN 80 -150

UNA-Special Type 62B, PN 16



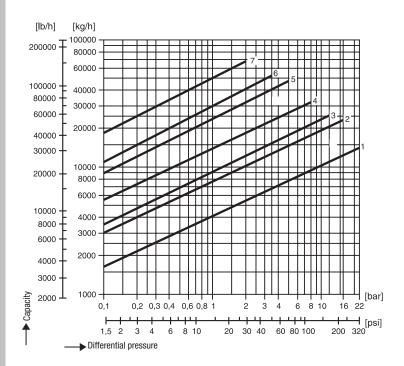
Available orifices (AO)					
1	DN 100	A0 16			
2	DN 100	A0 10			
3	DN 100	A0 5			
4	DN 100	A0 3.5			
5	DN 100	A0 2			



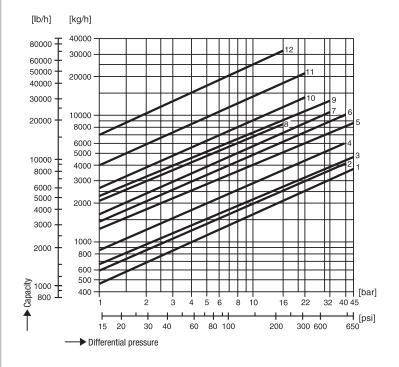
The charts show the maximum hot condensate capacities for the range of float-controlled orifices (AO) and sizes available.

UNA 38

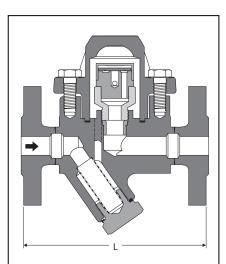
UNA 39



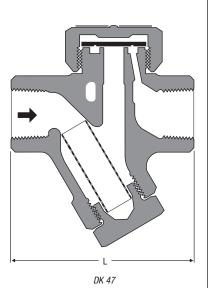
* Traps with small end connection sizes do not reach the flowrates indicated in this chart.

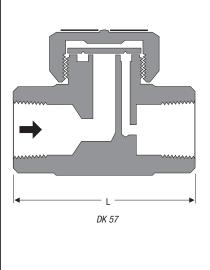

The charts show the maximum hot condensate capacities for the range of orifices (A0) and sizes available.

UNA PN 25, DN 100


Avail	Available						
orific	ces (AO)						
1	DN 100	A0 22					
2	DN 100	AO 16					
3	DN 100	A0 12					
4	DN 100	8 OA					
5	DN 100	A0 5					
6	DN 100	A0 3.5					
7	DN 100	A0 2					

UNA-Special PN 63 (PN 40)




Avail	Available						
orific	orifices (AO)						
1	DN 65	A0 45					
2	DN 65	A0 40					
3	DN 80	A0 45					
4	DN 65	A0 32					
	DN 80	A0 40					
5	DN 100	A0 45					
6	DN 65	A0 22					
	DN 100	A0 40					
7	DN 80	A0 32					
8	DN 65	A0 16					
9	DN 100	A0 32					
10	DN 80	A0 22					
11	DN 80	A0 16					
	DN 100	A0 22					
12	DN 100	A0 16					

Features of the DK series

- Discharge with virtually no banking-up
- · Robust, insensitive regulator
- · Installation in any position
- Max. admissible back pressure 80 % of the upstream pressure

Application

Туре		
DK 45	RHOMBUS/line®	Rhombusline body with enclosed, weather-resistant regulator for discharging steam lines and tracing systems without banking-up of condensate
DK 47-L DK 57-L		Compact steam trap for small condensate flowrates for discharging steam lines and tracing systems without banking-up of condensate
DK 47-H DK 57-H		Compact steam trap for large condensate flowrates for discharging steam lines and tracing systems without banking-up of condensate

Pressure/Temperature Ratings

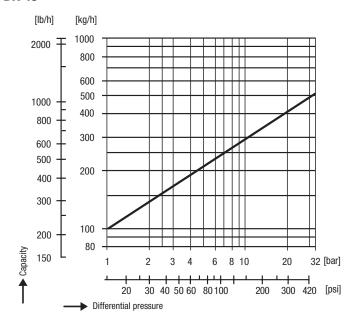
Туре	PN / Class	∆ PMX	Ma	iterial		Pressur	e/Temp. Ratin	ng¹)
			EN ASTM		PMA	TMA	p/T	
		[bar]			[bar]	[°C]	[bar	/°C]
DK 45	PN 40	32	1.0460	A105	40.0	420	27.6 / 300	17.1 / 420
DK 47	PN 63 / Class 600	42	1.40272)	A743-CA40	63.0	400	50.0 / 300	42.0 / 400
DK 57	PN 63 / Class 600	42	1.40212)	AISI420	63.0	400	50.0 / 300	42.0 / 400

¹⁾ Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

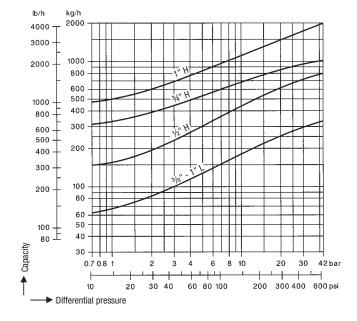
For full details on limiting conditions depending on end connection and type of regulator see data sheet.

Available End Connections and Overall Length

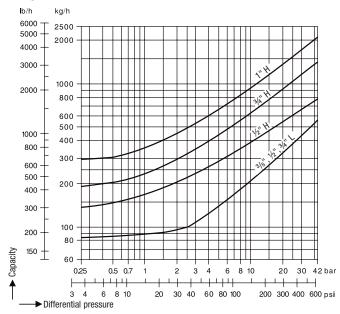
		Overall length (L) in mm						
Туре	Connections	DN 10 3/8"	DN 15 1/2"	DN 20 3/4"	DN 25 1"			
DK 45	Flanged EN PN 40	-	150	150	160			
	Flanged ASME 1501)	_	150	150	160			
	Flanged ASME 3001)	-	150	150	160			
	Screwed sockets	_	95	95	95			
	Socket-weld (SW)	_	95	95	95			
	Butt-weld (BW)	_	200	200	200			
DK 47-L	Screwed sockets	78	78	90	95			
DK 47-H	Screwed sockets	_	78	90	95			
DK 57-L	Screwed sockets	55	65	80	_			
DK 57-H	Screwed sockets	_	70	80	90			

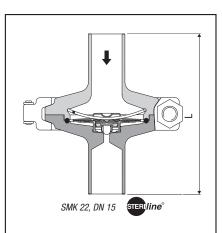

¹⁾ DK 45 with flanged ASME: Overall length 172 mm on request.

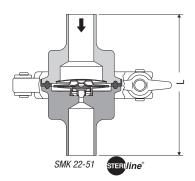
²⁾ ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.

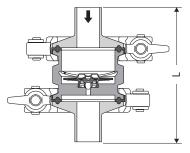


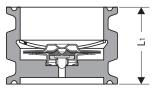
The charts show the maximum hot condensate capacities.

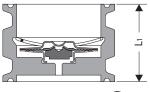

DK 45






DK 57





SMK 22-81, SMK 22-82 STERIJIne°

Functional unit SMK 22-81 STERI line®

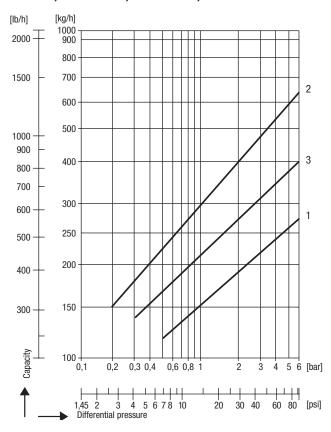
Functional unit SMK 22-82 STERI line

Application

Туре	
SMK 22 STERI/line°	Virtually pocket-free For small and medium condensate flowrates. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally up to Ra $\leq 0.4~\mu m$ electropolished.
SMK 22-51	Virtually pocket-free For small and medium condensate flowrates. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally Ra $\leq 0.6~\mu m$ plasma polished.
SMK 22-81	Virtually pocket-free For small and medium condensate flowrates. Functional unit easy to exchange. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally Ra $\leq 0.6~\mu m$ plasma polished.
SMK 22-82	Virtually pocket-free For medium and large condensate flowrates. Functional unit easy to exchange. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally Ra $\leq 0.6~\mu m$ plasma polished.
Functional unit SMK 22-81 STEEP line®	Virtually pocket-free For small and medium condensate flowrates. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally Ra $\leq 0.6~\mu m$ plasma polished. Connection via socket for mounting between clamps DIN 32676-DN 40.
Functional unit SMK 22-82 STEED line®	Virtually pocket-free For medium and large condensate flowrates. Internal surface roughness Ra $\leq 0.8~\mu m$ machine faced, optionally Ra $\leq 0.6~\mu m$ plasma polished. Connection via socket for mounting between clamps DIN 32676-DN 40.
SRK 22A	Virtually pocket-free Non-return valve for liquids, gases and steam. Connection via socket for mounting between clamps DIN 32676.

Pressure/Temperature Ratings

Туре	PN / Class	∆РМХ	Mat		Pressure	e/Temp. Ratir	ng¹)	
			EN	ASTM	PMA	TMA	р	/T
		[bar]			[bar]	[°C]	[baı	r/°C]
SMK 22	PN 10	6	1.4435	A276 316L ²)	10.0	185 ³)	10.0 / 20	6.0 / 1853)
SMK 22-51	PN 10	6	1.4404	A182 316L ²)	10.0	185 ³)	10.0 / 20	6.0 / 1853)
SMK 22-81 SMK 22-82	PN 10	6	1.4404	A182-316L ²)	10.0	185³)	10.0 / 20	6.0 / 185 ³)
Functional unit SMK 22-81 SMK 22-82	PN 10	6	1.4404	A182-316L ²)	10.0	185³)	10.0 / 20	6.0 / 1853)
SRK 22A	PN 10	-	1.4408 / 1.4571	A351 CF8M / AISI316Ti	10.0	185³)	10.0 / 20	6.0 / 185 ³)


- 1) Limits for body/cover. Functional requirements may restrict the use to below the limits quoted. For full details on limiting conditions depending on end connection and type of regulator see data sheet.
- 2) ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.
- $^{3}\!)$ 185 °C with PTFE gasket, 150 °C with EPDM gasket.

Available End Connections and Overall Length

		Overall length (L) in mm								
Туре	Connections	DN 10 ³ /8"	DN 15 1/2"	DN 20 3/4"	DN 25 1"	DN 32 1 ¹ / ₄ "	DN 40 1 ¹ / ₂ "	DN 50 2"		
SMK 22	Butt-weld ends Clamp	83 65	83 65	83 65	83 65	-	-	_		
SMK 22-51	Butt-weld ends Clamp	90 65	90 65	90 65	90 65	-	-	_		
SMK 22-81	Butt-weld ends	96	96	96	96	-	-	_		
Functional unit SMK 22-81 SMK 22-82	Socket for mounting between clamps DIN 32676-DN 40 L1 standard	-	-	-	35	-	-	-		
SRK 22A	Socket for mounting between clamps DIN 32676	-	23	29.5	33.5	38	43	54		

SMK 22, SMK 22-51, SMK 22-81, SMK 22-82

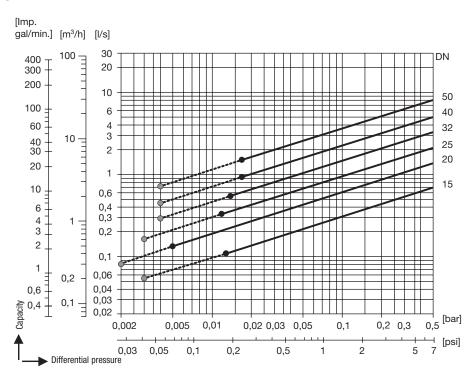
The chart shows the maximum capacities for hot and cold condensate.

Curve 1 SMK 22, SMK 22-51, SMK 22-81

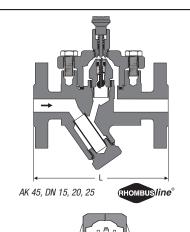
This curve indicates the max. capacity of hot condensate that the steam trap with regulating membrane Steri*line* can discharge with virtually no banking-up.

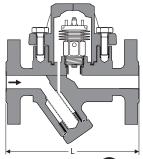
Curve 2 SMK 22, SMK 22-51, SMK 22-81, SMK 22-82

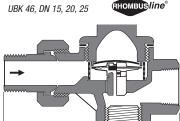
This curve shows the max. capacity of cold condensate that the steam trap can discharge (20 °C at start-up).

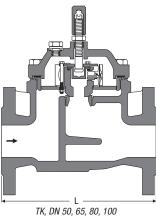

Curve 3 SMK 22-82

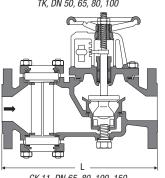
This curve indicates the max. capacity of hot condensate that the steam trap with regulating membrane Steri*line* can discharge with virtually no banking-up.


Other steam traps and non-return valves for sterile and aseptic applications:


MK 45A-1 and MK 45A-2	see pages 8 – 9
MK 36/51 and MK 36/52	see pages 8 – 9
UNA 16A	see pages 10 - 13
UNA 46A	see pages 10 - 13
VKE stainless steel	see pages 29 - 30
RK 86A	see pages 46 - 47
RK 16A	see pages 48 – 49
RK 26A	see pages 48 - 49


SRK 22A





MK 20, DN 15, 20

GK 11, DN 65, 80, 100, 150 GK 21, DN 50

Application

Туре	
AK 45 RHOMBUSline®	Condensate drain valve for discharging condensate from steam systems during start-up and draining residual condensate at shut-down, with integral Y-type strainer and hand purging knob. Factory-set closing pressure 0.8 bar.
UBK 46 RHOMBUSline®	Steam trap with adjustable condensate discharge temperature, thereby suppressing the formation of flash steam. With Y-type strainer.
MK 20	Steam trap for low-pressure steam-heating installations.
TK 23, TK 24	Steam trap with thermostatic pilot control using thermostatic capsules for the discharge of very large condensate flowrates with relatively continuous condensate formation.
GK 11 ¹)	Thermodynamic steam trap with stage nozzle for the discharge of very large condensate flowrates. With integral Vaposcope (sightglass) for optimum trap adjustment.

¹⁾ DN 50 mm: GK 21

Pressure/Temperature Ratings

Туре	PN / Class	∆РМX	Material		Max. Pressure/Temperature Rating ¹)			
			EN	EN ASTM		TMA	p/T	
		[bar]			[bar]	[°C]	[bar	·/°C]
AK 45	PN 40	-	1.0460	A105	40.0	420	27.6 / 300	17.1 / 420
UBK 46	PN 40	32	1.0460	A105	40.0	420	27.6 / 300	17.1 / 420
MK 20	PN 6	4.5	5.3103	-	6.0	300	4.5 / 250	3.6 / 300
TK 23	PN 16	5 / 10	5.1301	A126 Cl.B ²)	16.0	300	16.0 / 120	10.0 / 300
TK 24	PN 25	5 / 14	1.0619	A216 WCB	25.0	400	19.4 / 200	14.2 / 400
GK 11, GK 21	PN 10/16	6	5.1301	A126 Cl.B ²)	16.0 ³)	300	16.0 / 120 ³)	13.0 / 3003)

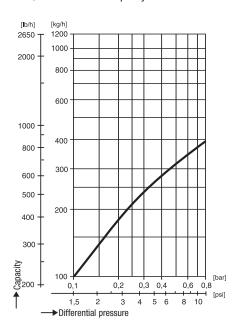
¹⁾ Limits for body/cover. Functional requirements may restrict the use to below the limits quoted. For full details on limiting conditions depending on end connection and type of regulator see data sheet.

Available End Connections and Overall Lengths

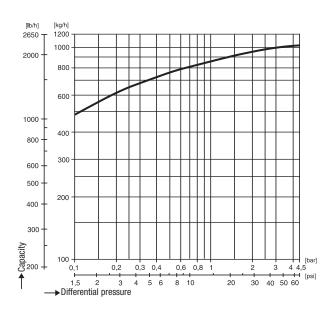
				Ove	rall leng	th (L) in	mm		
Туре	Connection	DN 15 1/2"	DN 20 3/4"	DN 25 1"	DN 50 2"	DN 65 2 ¹ / ₂ "	DN 80 3"	DN 100 4"	DN 150 6"
AK 45	Flanged EN PN 40	150	150	160	-	-	-	-	_
	Flanged ASME 150	150	150	160	_	_	_	_	_
	Flanged ASME 300	150	150	160	-	-	-	-	_
	Screwed sockets	95	95	95	-	-	-	-	_
UBK 46	Flanged EN PN 40	150	150	160	-	-	-	-	_
	Flanged ASME 150	150	150	160	_	_	_	_	_
	Flanged ASME 300	150	150	160	-	-	-	-	-
	Screwed sockets	95	95	95	-	_	-	-	_
	Socket-weld (SW)	95	95	95	-	-	-	-	_
MK 201)	Male/female thread	120	125	-	-	-	-	-	-
TK 23	Flanged EN PN 16	-	_	-	230	290	310	350	_
TK 24	Flanged EN PN 25	-	_	-	230	290	310	350	-
GK 11 ²)	Flanged EN PN 10/16	-	_	-	320	420	420	620	900

¹⁾ Straight-through or angle design (see representation)

²⁾ ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.


³) GK 11, DN 100/150, PN 10, max. 10 bar

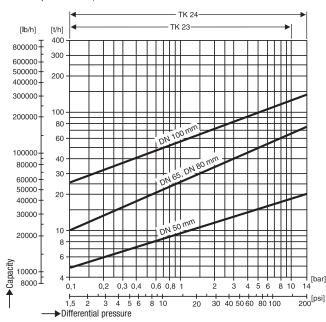
²⁾ DN 50 mm: GK 21



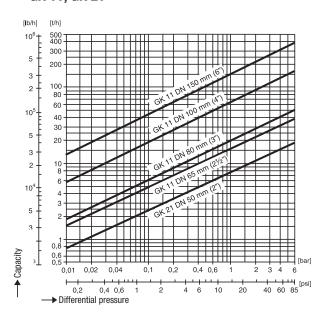
The charts show the maximum hot condensate capacities. (Exception: AK 45 - cold water capacity.)

AK 45 Cold water capacity

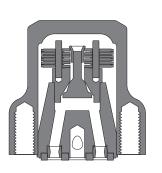
MK 20

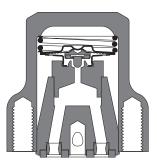


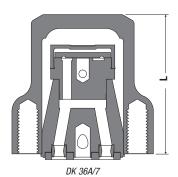
Capacities, opening temperatures UBK 46


Service pressure	[barg]	1	2	4	8	12	16	20	26	32
Factory-set opening temperature	[°C]	60	64	72	84	93	102	110	118	128
Capacity at t 10 K below opening temperature	[kg/h]	30	60	90	120	130	140	150	160	170
Cold water capacity at 20 °C (start-up capacity)	[kg/h]	250	320	480	760	1020	1280	1500	1780	2040

TK 23, TK 24


For differential pressures < 1 bar use capsule "0H2" (max. service pressure 5 bar).


GK 11, GK 21



BK 36A/7

MK 36A/71

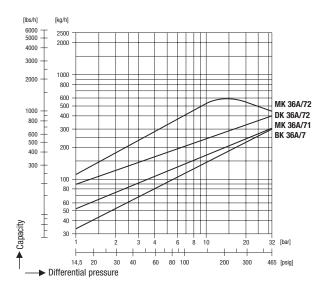
Features

- Maintenance-free, ultra-compact steam traps made from stainless steel, suitable for all UNIVERSAL (Swivel) connectors
- Installation in any position
- · Integrated spiral wound gasket for connector
- Only two screws make for a quick and easy installation
- All steam trap units are optionally available with a UNIVERSAL connector (not fitted), e.g. UC 36, UCY 36 or TS 36.

Application

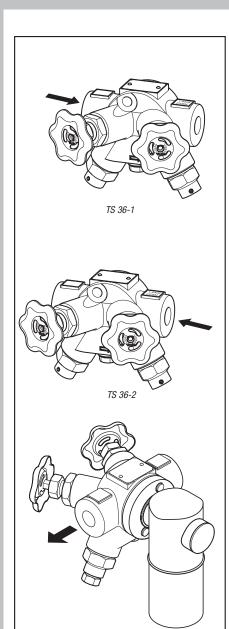
Туре	
BK 36A/7	"Thermostatic/thermodynamic bimetallic" trap unit with corrosion-resistant Duo S.S. regulator unaffected by waterhammer, for condensate with virtually no banking-up and automatic air-venting of steam lines and tracing systems.
MK 36A/71 MK 36A/72	"Thermostatic capsule" trap unit with corrosion-resistant membrane regulator 5N1 unaffected by waterhammer, for condensate discharge with virtually no banking-up and automatic air-venting of steam lines and tracing systems.
DK 36A/7	"Thermodynamic" trap unit for condensate discharge with virtually no banking-up.
IB 16A-7	"Inverted bucket" trap unit for condensate discharge with no banking-up

Specification


Туре	PN / Class	Δ PMX	Material		Pressure /Temperature ¹)			re¹)
			EN ASTM		PMA	TMA	p/T	
		[bar]			[bar]	[°C]	[bar	·/°C]
BK 36A/7	Class 300	32	1.4408	A351-CF8M	49.6	400	31.6 / 300	29.4 / 400
MK 36A/71, MK 36A/72	Class 300	32	1.4408	A351-CF8M	49.6	400	31.6 / 300	29.4 / 400
DK 36A/7	Class 300	32	1.4408	A351-CF8M	49.6	400	31.6 / 300	29.4 / 400
IB 16A-7	_	27.6	1.4306	A240-304L	-	425	_	28.0 / 425

¹⁾ Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

For full details on limiting conditions depending on end connection and type of regulator see data sheet.


Available Connections and Lengths

Tune	Connection	Length L			
Туре	Connection	1/2"	3/4"	1"	
BK 36A/7; MK 36A/71; MK 36/A72; DK 36A/7	Universal connector	65	65	65	
IB 16A-7	Universal connector	178	178	178	

The chart shows the discharge capacity of hot condensate

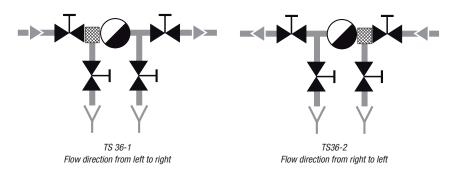
TS 36 with IB 16A-7

The compact-type Trap Station TS 36 features additional test and shut-off functions and is a more convenient alternative to the simpler connector units UC 36 and UCY 36.

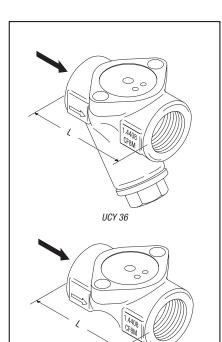
When installed with a suitable steam trap with UNIVERSAL (Swivel) connector (sold separately) the equipment can discharge condensate from steam systems.

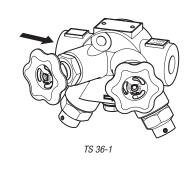
The two in-built **isolating valves** are designed to completely shut off the condensate inlet and outlet independently from each other.

The integral **blowdown valve** provides a means for cleaning the strainer and the **test valve** enables the steam trap operation to be checked.

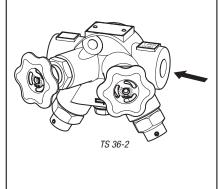

The steam traps can be easily attached to and removed from the TS 36 by means of only two screws

The following GESTRA connector steam traps can be used:


- Bimetallic steam trap BK 36A/7
- Steam trap with membrane capsule MK 36A/71
- Steam trap with membrane capsule MK 36A/72
- Thermodynamic steam trap DK 36A/7
- Inverted bucket steam trap IB 16A-7


Non-GESTRA swivel connector steam traps can also be fitted to the TS 36.

Schematic diagram



UC 36

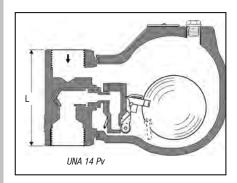
Features

- Body / internals made from corrosion-resistant stainless steels
- UNIVERSAL (Swivel) connector for steam trap
- Connector unit can remain in pipeline during maintenance work
- Steam trap unit is easy to install and remove by means of only two screws

Application

Туре	
UC 36	Universal connector
UCY 36	Universal connector with integrated strainer
TS 36-1	Compact-type connector unit with 2 isolating valves, test valve and strainer with blow-down valve. Coloured handwheels indicate inlet and outlet and assist in the correct installation. Flow direction from left to right.
TS 36-2	Compact-type connector unit with 2 isolating valves, test valve and strainer with blow-down valve. Coloured handwheels indicate inlet and outlet and assist in the correct installation. Flow direction from right to left.

Pressure/Temperature Ratings


Type UC 36, UCY 36, TS 36		ASME B 16.5 Class 300 (PN 50) Material Group 2.2)							
p (pressure)	[bar]	49.6	42.2	35.7	31.6	29.4			
T (temperature)	[°C]	38	38 100 200 300 400						
PMO (max. service pressure)		33.7 bar at 242 °C							

Based on ASME B 16.5, ASME B 16.34

Available Connections and Lengths

Туре	Connection	Length L				
туре	Connection	1/2"	3/4"	1"		
UC 36, UCY 36	Screwed sockets NPT Screwed sockets G	75	75	75		
TS 36-1, TS 36-2	Socket-weld ends	120	120	on request		

Features

- Liquid drainer for compressed air and gases with ball float and rolling ball valve
- The trap is suitable for draining gas and compressed air systems
- Purging device and connection for air-balance pipe included as standard
- · Internals made from corrosion-resistant stainless steels
- Closing unit for temperatures up to 40 °C with rolling ball made from Perbunan, up to 120 °C with rolling ball made from stainless steel

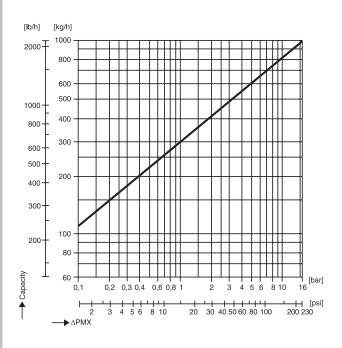
 Body convertible for horizontal / vertical flow and left to right / right to left.

Specification

Туре	PN / Class	Δ PMX	Material		Pressure /Temperature¹)			
			EN	ASTM	PMA TMA p/T		/T	
		[bar]			[bar]	[°C]	[bar	/°C]
UNA 14Ph, UNA 14Pv with S.S. valve ball	PN 25	16	5.3103	-	25.0	120	25.0 / 20	25.0 / 120
UNA 14Ph, UNA 14Pv with Perbunan valve ball	PN 25	16	5.3103	_	25.0	40	25.0 / 20	25.0 / 40

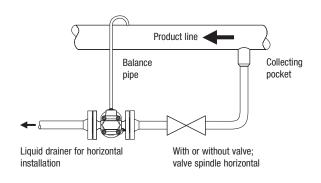
¹⁾ Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

For full details on limiting conditions depending on end connection and type of regulator see data sheet.

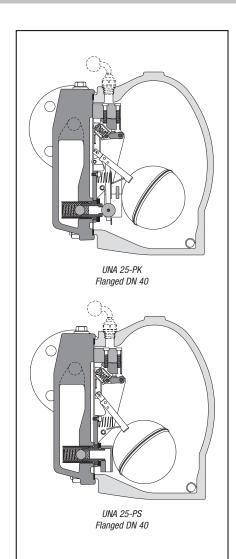

Available End Connections and Overall Length

Time	Connection	Overall length L in mm						
Туре	Connection	DN 15 1/2"	DN 20 3/4"	DN 25				
		12	74	•				
UNA 14 Ph	Screwed sockets ³)	95	95	95				
	Flanged EN PN 25	150	150	160				
UNA 14 Pv	Screwed sockets ³)	95	95	95				
	Flanged EN PN 25	150	150	160				

³⁾ Screwed sockets BSP to EN ISO 228-1 or screwed sockets NPT


Capacity Chart

UNA 14P



Hints on Installation

The condensate/distillate must be free to fall towards the trap. Isolating valves in horizontal lines lead to the formation of water pockets. In this case an air-balance pipe is required (see drawing).

Description

UNA 25-PK:

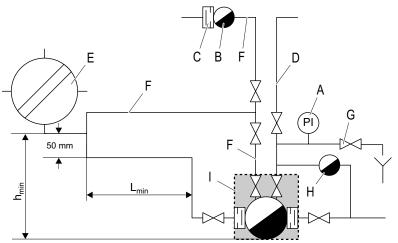
Ball-float operated steam trap with pumping function. The equipment works primarily as a steam trap. The integral automatic pump function ensures efficient condensate discharge even if the steam pressure is low or the back pressure high.

IINA 25-PS

Float-operated condensate lifter, designed for effective return of condensate. Steam is used as motive power to displace condendate out of the body.

Features

- Integrated inlet and outlet check valves.
- · Rolling ball valve (UNA 25-PK) for tight shut-off even with low condensate flowrates.
- Float-controlled compact changeover unit for controlling motive steam and deaeration.


Specification

Туре	PN / Class	Mater	ial	Pressure/Temperature¹)											
		EN	ASTM ²)	PMA	TMA	PM0	PMOB	p.	/T						
				[bar]	[°C]	[bar]	[bar]	[bar	/°C]						
UNA 25-PK	PN 40	5.3103	_	40.0	350	6.0 / 13.0	3.0 / 5.0	31.6 / 250	25.0 /350						
UNA 25-PK	Class 150	5.3103	A 395	17.2	350	6.0 / 13.0	3.0 / 5.0	12.1 / 250	6.6 / 350						
UNA 25-PS	PN 40	5.3103	-	40.0	350	13.0	5.0	31.6 / 250	25.0 / 350						
UNA 25-PS	Class 150	5.3103	A 395	17.2	350	13.0	5.0	12.1 / 250	6.6 / 350						

Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.
 For full details on limiting conditions depending on end connection and type of regulator see data sheet.

Available Connections and Lengths

Туре	Connection	Length L in mm DN 40 [1½"]
	Flanged EN PN 40	230
UNA 25-PK UNA 25-PS	Flanged ASME 150	227
OHA 20 10	Screwed G or NPT	227

Key

- A Pressure gauge
- B Thermostatic steam trap for air venting, e. g. MK
- C Optional non-return valve in order to prevent air from entering if a vacuum is formed.
- D Motive steam line (drained, DN 15)
- E Heat exchanger
- F Vent line, DN 15
- G Pressure compensation valve
- H Thermostatic steam trap for draining motive steam line, e. g. BK
- I UNA 25-PK/UNA 25-PS

Lmin 2.5 m, DN 40

hmin 0.5 m

Important Notes

The equipment must be hooked up to the pipes as shown in the graphical representation. Please take the following items into consideration:

- \blacksquare A motive steam line must be available and connected (connection: female thread, G½)
- A vent line must be available and connected (connection: female thread, G½)
- Minimum filling head required between condensate outlet of the heat exchanger and the bottom of the equipment: 0.5 m.
- \blacksquare An inlet line (min. length 2.5 m) or buffer reservoir (volume: 3 l) is required.
- Maximum motive steam pressure, depending on design, is 6 or 13 barg.

²⁾ ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.

Like any other industrial valve steam traps are subject to wear and their correct functioning can be impaired by precipitated solids and dirt deposits.

To assess the performance of a steam trap the following questions have to be answered:

- Does the steam trap work properly?
- If not, does the faulty trap cause loss of steam (leakage) or banking-up of condensate (obstructed discharge passage)?

Faulty steam traps are a major source of waste in a steam distribution system. A trap that is blowing live steam is the worst offender, but traps that are plugged or stuck closed can also be costly.

The decreased plant efficiency due to loss of energy and additional make-up water results in lost production. Furthermore, an increase of pressure is liable to arise in condensate systems which will lead to difficulties at all locations where condensate is discharged.

The magnitude of such a steam loss depends on the cross-sectional area of the leak and, at the same time, the amount of discharged condensate. Locations where only small amounts of condensate are formed and discharged, e. g. drainage points in steam lines and tracing systems, are particularly problematical. On the other hand, locations where relatively large amounts of condensate are discharged will not give rise to considerable loss of live steam because of the presence of a large volume of liquid.

Steam traps which are **obstructed or stuck closed** do not cause loss of energy and/or water but reduce — to a greater or lesser extent — the efficiency of heat-transfer equipment and steam users. And waterhammer caused by condensate banking-up leads to considerable physical damage in steam and condensate systems.

Experience shows that installations where no regular trap testing and servicing takes place have a failure rate of defective steam traps in the order of 15-25%. Regular maintenance and trap testing, which should be carried out at least once a year, can strongly reduce the failure rate to 5%.

Test Systems

Steam traps can be tested during operation by using **sightglasses**, **ultrasonic listening devices** or **level meters**.

Sightglasses (Vaposcopes Type VK 14, VK 16) provide an effective means of observing the flow of liquids in pipework. They are installed upstream of the traps, and allow the assessment of the traps by making their operation visible.

Level meters use conductivity readings to monitor steam trap performance. A test chamber with an integral level electrode is installed upstream of the trap to detect any defective steam trap. The corresponding output signal is displayed by the **Remote Test Unit NRA 1-3x** (remote monitoring).

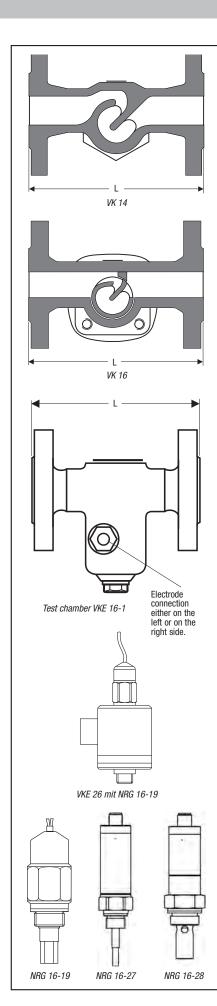
The system **VKE** can monitor all types and makes of steam traps to detect loss of live steam. The correct operation of RHOMBUS*line* steam traps type BK 45/46, MK 45, UBK 46 can be verified by using the compact-type level probes NRG 16-19, NRG 16-27 and NRG 16-28. The test station NRA 1-3x will evalute the data coming from the system VKE.

Another way to test traps is to use an **ultrasonic listening device** which detects the sound produced by steam flowing through the traps. Depending on the test system used the sound sensed by the device is either graphically represented in the form of a curve **(VKP 42)** or indicated by the deflection on the scale of a meter **(VKP 10)**. When using the VKP 10, the field data specialist has to assess the indicator deflection and, consequently, the operation of the steam trap. The VKP 42, however, can directly track leaks associated with faulty steam traps and provides comprehensive reporting and a complete trap survey history.

Annual costs caused by steam loss / potential savings

	Number of steam traps installed		
	Annual failure rate (Empirical value with first check approx. 15 – 25 %)	
Α	Number of defective steam traps		
В	Steam loss per steam trap (kg/h)		
C	Annual operating hours		
D	Annual steam loss (kg)	A x B x C =	
E	Cost of steam per ton		
F	Annual loss in EURO	D/1000 x E =	
G	CO ₂ saved per year (kg)	D x 0,16*) =	

^{*)} Results may vary as a function of the fuel used for generating steam and condensate return.


Example

Α	Number of defective steam traps	20
В	Steam loss per steam trap	3 kg/h
C	Annual operating hours	8000 h
D	Annual steam loss	480,000 kg
Ε	Cost of steam per ton	30.00 Euro/t
F	Annual loss	14,400 Euro
G	CO ₂ saved per year	76,800 kg

By the way:

A new steam trap costs – depending on the end connection – only approx. \in 200 to \in 250.

Application	
Type Vaposcope VK 14, VK 16	Sightglass with borosilicate glass for checking heat exchangers and steam traps (installation upstream of traps). Visual supervision of flow conditions in condensate lines.
VKE 16-1, VKE 16A	Test chamber for measuring electrode for monitoring steam traps (installed upstream of the steam trap) to detect steam loss or banking-up of condensate (VKE 26). For installation in horizontal lines or mounting at steam traps (VKE 26).
Vapophone VKP 10	Ultasonic detector for detecting steam leakage in steam systems; for monitoring steam traps and stop valves.
TRAP <i>test</i> Portal VKP 42 VKP 42 Ex	Computer-based monitoring, recording and evaluation system for steam traps of all types and makes to detect loss of steam and condensate banking up.
NRG 16-19 NRG 16-27 NRG 16-28	Measuring electrode for installation in the test chamber VKE or in the body of Rhombusline steam traps. Designed for detecting loss of live steam/banking-up of condensate (used in conjunction with test unit NRA 1-3 or teststation NRA 1-3 CANbus). Response sensitivity 1.0 μS/cm.

Vaposcope VK

The Vaposcope can be installed in horizontal and vertical lines (without conversion). Installation in **flow direction upstream of steam trap.** The application of the VK 14 is limited to fluids with pH 9. The VK 16 is fitted with mica disks as standard for applications up to pH 10.

Test Set VKE

Consisting of: test chamber **VKE 16-1 / VKE 16A** or **VKE 26** with integrated measuring electrode NRG 16-19 or NRG 16-27 for all condensate discharge systems and types. **Test station** NRA 1-3 or teststation NRA 1-3 CANbus for remote monitoring. Simultaneous and continuous

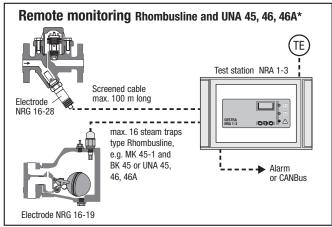
Test station NRA 1-3 or teststation NRA 1-3 CANbus for remote monitoring. Simultaneous and continuous monitoring of up to 16 steam traps to detect steam loss or banking-up of condensate. VKE 26: use in conjunction with float ball steam traps.

Pressure/Temperature Ratings

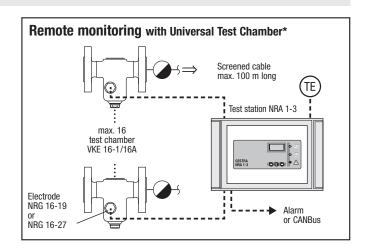
Туре	PN / Class	Mat	erial		Pressure	/Temperatu	re ¹)
		EN	ASTM	PMA	TMA	p.	/T
				[bar]	[°C]	[bar	/°C]
VK 14	PN 16	5.1301	A126 Cl.B ²)	16.0	280	12.8 / 200	9.6 / 280
VK 16	PN 40	1.0460	A 105	40.0	300	30.4 / 250	27.6 / 300
VKE 16-1	PN 40	1.0619	A216 WCB	40.0	400	28.4 / 250	23.1 / 400
VKE 16A STAINLESS STEEL	PN 40	1.4571	TP 316 Ti ²)	40.0	238	40.0 / 20	32.0 / 238
VKE 26	PN 40	1.0460	A105 ²)	40.0	400	28.4 / 250	23.1 / 400
NRG 16-19, NRG 16-27, NRG 16-28	PN 40	1.4571	AISI 316 Ti	40.0	238	40.0 / 20	32.0 / 238

¹⁾ Limits for body/cover. Functional requirements may restrict the use to below the limits quoted.

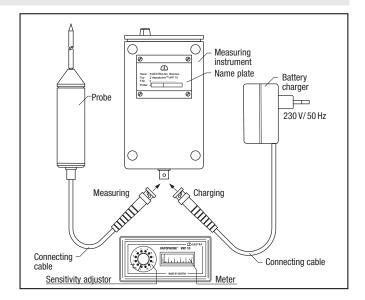
For full details on limiting conditions depending on end connection and type of regulator see data sheet.


Available Connections and Overall Lengths

			Overa	II length L	th L in mm				
Туре	Connection	DN 15	DN 20 3/4"	DN 25 1"	DN 40 11/2"	DN 50 2"			
VK 14	Flanged EN PN 16	130	150	160	200	230			
VK 16	Flanged EN PN 40	150	150	160	230	230			
	Flanged ASME 150	150	150	160	230	230			
	Flanged ASME 300	150	150	160	230	230			
	Screwed sockets	95	95	95	130	230			
	Socket-weld	95	95	95	130	230			
VKE 16-1	Flanged EN PN 40	150	150	160	_	_			
	Flanged ASME 150	150	150	160	_	_			
	Flanged ASME 300	150	150	160	-	-			
	Screwed sockets	95	95	95	_	_			
	Socket-weld	200	200	200	_	_			
VKE 16 A	Flanged EN PN 40	160	160	160	200	230			
VKE 26	External/internal thread 3/8" BSP								
NRG 16-19	External thread ³ / ₈ " BSP	Nominal le	ength = 31	mm					
NRG 16-27	External tilleau 78° BSP	with integ	rated Pt 10	00 thermoc	ouple				
NRG 16-28	External thread M 24 x 1.5 for insta steam traps with integrated Pt 1000			hombusline					


²⁾ ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.

System VKE



Vapophone VKP 10

The VKP 10 is used to detect sound in the ultrasonic range as caused by steam flowing through a steam trap.

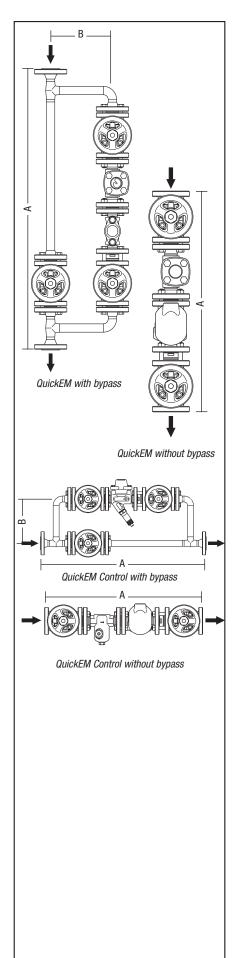
The ultrasonic vibrations are detected by a probe and converted into electric signals which are indicated on the meter of a measuring instrument.

Protection: IP 41

VKP 42 (Ex) and TRAPtest portal

Increase your productivity with the steam trap testing and evaluation system.

Intuitive operation and fast, reliable detection of faulty steam trap operating states are just some of the features of our VKP 42 testing system. With the new TRAPtest Portal software, you now have new, central and more powerful user and evaluation software at your disposal. This makes testing much more effective.


No PC installation is required, as you can access the software via a standard commercial browser. Furthermore the software provides analyses for optimum maintenance and helpful documentation to improve plant availability and safety.

- Cuts running costs
- Saves energy and CO₂ emissions
- Shortens the test time for a steam trap by up to 60%
- Simplified operation
- Superlative accuracy
- Central data storage and maximum data security

see data sheets for steam traps

Description

GESTRA Drain Modules QuickEM are completely interconnected units for horizontal or vertical installation with or without bypass. They come with valves and steam traps, non-return valves, sightglass and shut-off valves as well as all necessary pipes, fittings, flanges, gaskets and screws. Note that counterflanges, bolts and seals are not part of the supply. GESTRA Drain Modules QuickEM Control are used for monitoring steam traps and an electrode is directly fitted into the steam trap or a test chamber.

Pressure & Temperature Limits / End Connections

 Δ PMX / Δ P (admissible differential pressure) [bar]

QuickEM with and without bypass,	flanges PN 16,	EN 1092-1				
Service pressure p	[barg]	16.0	14.4	12.8	11.2	9.6
Inlet temperature T	[°C]	20	100	200	250	280
pH value				≤ 9		
Δ PMX / Δ P (admissible differential p	ressure) [bar]		see data	sheets for st	eam traps	
QuickEM with and without bypass,	flanges PN 40,	EN 1092-1				
Service pressure p	[barg]	40.0	37.1	33.3	30.4	27.6
Inlet temperature T	[°C]	20	100	200	250	300
pH value				≤ 10		
Δ PMX / Δ P (admissible differential p	ressure) [bar]		see data	sheets for st	eam traps	
QuickEM Control with and without	bypass, flanges	s PN 16, EN	1092-1			
Service pressure p	[barg]	16.0	14.4	12.8	11.2	9.6
Inlet temperature T	[°C]	20	100	200	238	238
Δ PMX / Δ P (admissible differential p	ressure) [bar]		see data	sheets for st	eam traps	
QuickEM Control with and without	bypass, flange:	s PN 40, EN	1092-1			
Service pressure p	[barg]	40.0	37.1	33.3	30.4	27.6
Inlet temperature T	[°C]	20	100	200	238	238

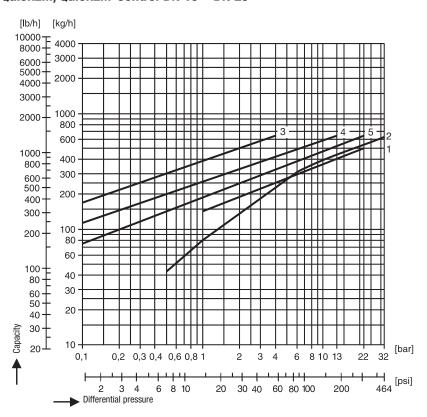
Dimensions and Weights

	DN 15					DN 20				DN 25				DN 40				DN 50			
QuickEM with bypass	Dimens [mn		Weigh	ıt [kg]		nsions m]	Weigh	nt [kg]		nsions m]	Weigh	ıt [kg]	Dimer [m		Weigh	nt [kg]	Dimer [m		Weigh	nt [kg]	
	A*)	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	
QuickEM BK1)	821/841	200	21	25	908	200	27	31	988	200	45	49	1290	300	83	82	1452	300	102	101	
QuickEM MK ¹)	821/841	200	21	25	908	200	27	31	988	200	45	49	1290	300	83	82	1452	300	103	102	
QuickEM UNA 14	821/841	200	26	-	908	200	33	_	988	200	51	-	-	_	_	_	_	-	_	_	
QuickEM UNA 16	821/841	200	_	27	908	200	_	34	988	200	_	53	-	_	_	_	_	-	_	-	
QuickEM UNA 45 ¹)	-	_	-	-	-	-	-	-	-	-	-	-	1290	300	97	_	1452	300	115	_	
QuickEM UNA 46	_	_	_	-	_	_	_	_	_	_	_	-	1290	300	_	96	1452	300	_	114	

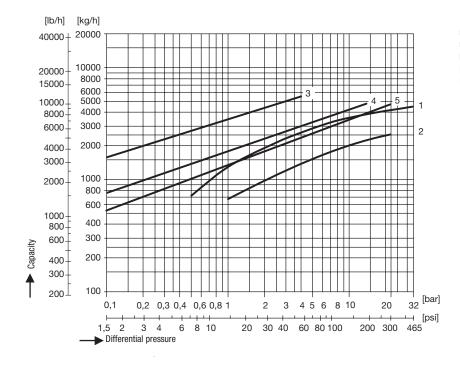
	DN 15					DN 20				DN	25		DN 40				DN 50			
QuickEM Control with bypass		nsions m]	Weigh	nt [kg]		nsions m]	Weigh	nt [kg]		nsions m]	Weigh	nt [kg]	Dimer [m		Weigh	nt [kg]	Dimer [m		Weigh	nt [kg]
	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40
QuickEM Control BK1)	689	250	21	21	756	250	27	27	826	300	45	45	1320	400	81	80	1452	400	100	99
QuickEM Control MK1)	689	250	21	21	756	250	27	27	826	300	45	45	1320	400	81	80	1452	400	101	100
QuickEM Control UNA 14	841	200	27	-	908	200	33	-	988	200	51	-	-	_	_	_	-	-	_	_
QuickEM Control UNA 16	841	200	_	27	908	200	_	33	988	200	_	51	_	_	_	_	_	-	_	-
QuickEM Control UNA 451)	_	-	_	-	-	-	-	-	-	-	-	-	1090	400	88	-	1222	400	103	_
QuickEM Control UNA 46	_	_	_	_	-	_	_	_	-	_	_	_	1090	400	_	87	1222	400	_	102

	DN 15					DN	20			DN	25			DN	40		DN 50			
QuickEM without bypass	Dimens [mm		Weigl	nt [kg]	Dimer [m	nsions m]	Weigh	nt [kg]	Dimer [m	nsions m]	Weigh	nt [kg]	Dimer [m	nsions m]	Weigh	nt [kg]	Dimer [m	nsions m]	Weigh	nt [kg]
	A*)	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40
QuickEM BK1)	564/584	_	11	14	627	_	14	17	670	_	16	20	870	_	50	49	968	_	59	58
QuickEM MK1)	564/584	-	11	14	627	_	14	17	670	_	16	20	870	_	50	49	968	_	59	58
QuickEM UNA 14	564/584	-	16	-	627	_	20	-	670	-	23	-	_	-	-	-	-	-	-	-
QuickEM UNA 16	564/584	-	-	17	627	_	-	21	670	_	_	23	_	_	_	_	_	_	_	-
QuickEM UNA 451)	-	_	-	-	-	_	_	_	-	_	_	-	870	_	64	-	968	_	73	_
QuickEM UNA 46	-	-	-	_	-	_	_	_	_	_	_	-	870	-	_	63	968	-	_	72

		DN	l 15		DN 20					DN	25			DN	40		DN 50			
QuickEM-Control without bypass	Dimer [m		Weigl	nt [kg]	Dimer [m	nsions m]	Weigl	nt [kg]	Dimer [m	nsions m]	Weigh	nt [kg]	Dimer [m		Weigl	nt [kg]	Dimer [m	nsions m]	Weigh	nt [kg]
	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40	Α	В	PN 16	PN 40
QuickEM Control BK1)	432	-	11	11	475	-	14	14	508	-	16	16	900	-	46	46	968	_	55	55
QuickEM Control MK1)	432	_	11	11	475	_	14	14	508	_	16	16	900	-	47	47	968	_	56	56
QuickEM Control UNA 14	584	_	17	-	627	_	20	_	670	_	22	-	-	-	_	_	_	_	_	-
QuickEM Control UNA 16	584	_	-	17	627	_	-	20	670	_	_	22	-	-	_	_	_	_	_	_
QuickEM Control UNA 451)	-	-	-	-	-	-	-	-	-	-	-	-	668	-	50	-	736	-	56	-
QuickEM Control UNA 46	-	_	-	-	_	_	-	-	_	_	_	_	668	-	_	50	736	_	_	56

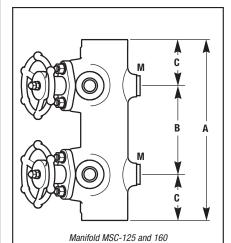

^{*)} PN 16 / PN 40 $^{-1}$) Not for QuickEM made from stainless steel. Other sizes available on request.

Capacity Chart


The charts show the maximum hot condensate capacities.

QuickEM, QuickEM-Control DN 15 - DN 25

(Curve 3
(Curve 4
(Curve 5
(Curve 1
(Curve 2


QuickEM, QuickEM-Control DN 40 - DN 50

UNA 45 / UNA 46 DN 40-50 AO 4	(Curve 3)
UNA 45 / UNA 46 DN 40-50 AO 13	(Curve 4)
UNA 46 DN 40-50 AO 22	(Curve 5)
BK 15	(Curve 2)
MK 25-2	(Curve 1)

33

Description

GMF comprises a range of forged carbon steel compact manifolds with integral piston type stop valves for steam distribution and condensate collection duty.

Materials

Туре	DN	Pressure	EN¹)	ASTM
MSC-125	15 – 20	Class 300	1.0460	A105N / LF2
MSC-160	15 – 20	Class 300	1.0460	A105N / LF2

¹⁾ ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.

Pressure/temperature limits

Туре	Pressure	PMA ²)	TMA²)
MSC-125	Class 300	51 bar / 38°C	425°C / 28 bar
MSC-160	Class 300	51 bar / 38°C	425°C / 28 bar

²⁾ Note that the type of end connection may reduce the temperature/pressure limit.

Dimensions [mm]

	Number of		DN	15			DN	20			
	connections	Α	В	С	M	Α	В	С	M		
MSC04-125	4	255				255					
MSC08-125	8	505	125	65	M12	505	125	65	M12		
MSC12-125	12	755						755			
MSC04-160	4	325				325					
MSC08-160	8	645	160	82,5	M12	645	160	82,5	M12		
MSC12-160	12	970				970					

Weight [kg]

	Number of connections	DN 15	DN 20
MSC04-125	4	9	9
MSC08-125	8	18	18
MSC12-125	12	26	26
MSC04-160	4	10	10
MSC08-160	8	20	20
MSC12-160	12	30	30

Description

The connecting kits for sizes DN 15 to DN 65 and pressures PN 10 to PN 40 contain the following parts required for connecting flanged valves and steam traps to pipe flanges:

- BoltsGaskets

With the content of one connecting kit you can attach the inlet and outlet side of a steam trap or valve to the pipe flange. Normally two gaskets, 8 nuts and 8 bolts are required for this purpose. However, for DN 65 a total of 16 nuts and 16 bolts are required.

The following nuts, bolts and gaskets are available:

Connecting kit	Bolts made of 1.7218	Bolts made of 1.7218	Gaskets to EN 1092
	to EN 1515-1	to ISO 4032	Graphite with perforated steel insert and inside seam 1.4571
	for temperatures from	for temperatures from	for temperatures from
	-10 °C to 450 °C	-10 °C to 450 °C	-10 °C to 450 °C
KIT 1 (DN 15 PN 10-40)	M 12 x 50 (8 pieces)	M 12 (8 pieces)	22 x 51 x 2 mm
KIT 2 (DN 20 PN 10-40)	M 12 x 55 (8 pieces)	M 12 (8 pieces)	27 x 61 x 2 mm
KIT 3 (DN 25 PN 10-40)	M 12 x 55 (8 pieces)	M 12 (8 pieces)	34 x 71 x 2 mm
KIT 4 (DN 40 PN 10-40)	M 16 x 60 (8 pieces)	M 16 (8 pieces)	49 x 92 x 2 mm
KIT 5 (DN 50 PN 10-16)	M 16 x 60 (8 pieces)	M 16 (8 pieces)	61 x 107 x 2 mm
KIT 6 (DN 50 PN 25-40)	M 16 x 65 (8 pieces)	M 16 (8 pieces)	61 x 107 x 2 mm
KIT 7 (DN 65 PN 10-16)	M 16 x 60 (16 pieces)	M 16 (16 pieces)	77 x 127 x 2 mm
KIT 8 (DN 65 PN 25-40)	M 16 x 70 (16 pieces)	M 16 (16 pieces)	77 x 127 x 2 mm

GESTRA TRAP*test* VKP 42 portal

Planning and testing steam trap trials in the cloud

Digitalisation is coming to steam trap testing. Besides the proven GESTRA TRAP*test* Software, the VKP 42 portal now for the first time offers a cloud-based evaluation application. The portal version offers **many** benefits:

- No software needs to be installed. Access the cloud through a web browser from any computer, anywhere.
- You can set up several cloud users, for example to account for vacations. This way, your team will work on a shared database. You'll no longer need to transfer data between various computers, especially not manually.
- Wireless data transfer: cloud and data collector communicate via internet.

 No matter where you are or what your colleague's working hours might be, you can always transfer your test jobs and test results. All it takes is internet access.

This way, the TRAP*test* VKP 42 portal supports your team at work.

Direct detection of new traps in the system

E-mail: info@de.gestra.com

Date

Steam pressure / p_1	bar	~
Steam temperature / T_1	°C	T_1 p_1
Backpressure / p_2	bar	
Product outlet temperature / T_A(only for draining heat exchangers)	°C	
Condensate flowrate to be discharged	kg/h	p_2
Fluid Plant steam Pure steam ————————————————————————————————————		
Nominal size Pressure rating		
End connection EN flanges ASME flanges Butt-weld ends Socket-w	veld ends 🔲 Screwed sockets G	Screwed sockets NPT
Application Draining pipes Draining a hea	t exchanger	
	T_A	
Required inspections/approvals:		
Your details:		
Company		
Name / job title		
Telephone		
Fax		
E-mail		

GESTRA Gravity Circulation Checks, DISCO Non-Return Valves and DISCO Swing Check Valves

DISCO Non-Return Valves and DISCO Swing Check Valves

Page

Gravity Circulation Checks and DISCO Non-Return Valves for sanitation applications and hvac systems.

Гуре SB0 11, SB0 21, SB0 31 Гуре MB 14 Гуре RK 70, RK 71	42 – 43 42 – 43
DISCO Non-Return Valves and DISCO Swing Check Valves for industrial applications.	
Гуре RK 76	46 – 47 55 – 59 60 – 61
DISCO Non-Return Valves and DISCO Swing Check Valves for special applications.	
Гуре RK 16 A, RK 16 C	48 – 49 52 – 51 52 – 53
Type NAF-Check	64 – 65
DISCO Non-Return Valves and DISCO Swing Check Valves for marine applications	
Type RK 44S Type BBGS Type CB 24S Type WB 24S	58 60 – 61
Special springs for non-return valves RK	54

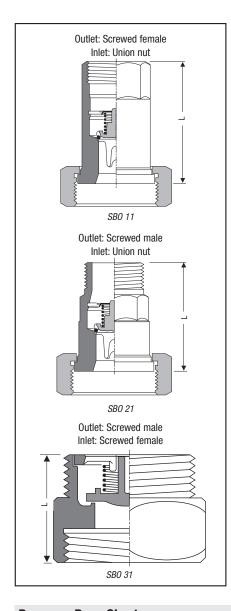
Questionnaire for preparing offers66

The Lift Restriction for GESTRA Non-Return Valves

More efficient pumps and the requirement to minimize pressure loss in the installation often lead to oversized non-return valves.

As a consequence, the valve does not open completely, resulting in increased wear and, more often than not, annoying valve clattering.

Up till now the required volume flow of these nonreturn valves could only be adjusted in certain cases by selecting a different size or changing the place of installation.


The lift restriction for GESTRA valves provides stable low-noise operation even with small flowrates.

For users who do not want to change their pipe layout or use smaller sizes but require a more stable operating mode we now offer a retrofitting set consisting of a stroke limiter and a spring cap. This mechanism reduces the volume flow for the necessary full opening as a function of the valve size by approx. 40 %.

The lift restriction is available for non-return valves RK 41, RK 44, RK 86 and RK 86A in sizes DN 15 up to DN 100.

Application and Features

Туре	PN	Application	Features
SB0	PN 6	Installed downstream of circulating pumps in heating and hot water installations in order to avoid gravity circulation	Plastic valve cone with advanced flow characterisc

Pressure/Temperature Ratings / Material

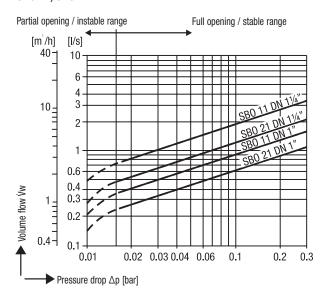
Max. service	Max. service	Materials			
pressure [bar]	temperature [°C]	Body	Valve cone		
6	130¹)	Brass	PP0		

¹⁾ Max. service temperature at atmospheric pressure

Dimensions

Туре			SBC	11	SBC	21	SB0 31		
Size	DN		1"	1 ¹ /4"	1"	1 ¹ /4"	3/4"	1"	1 ¹ /4"
	L	[mm]	66	82	57	70	39	40	45
Connections	Inlet ²)		G 11/2	G 2	G 11/2	G 2	C 11/.	G 11/2	6.0
(BSP thread)	Outlet		G 1	G 11/4	R1	R 11/4	G 1 ¹ / ₄		G2

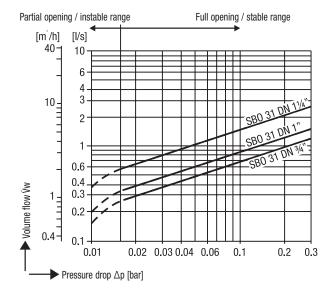
²⁾ SBO 11 and SBO 21: Thread of union nut


Opening Pressures

Differential pressures at zero volume flow.

Туре	DN	Oper	ning pre	ssure [m	ıbar]
			Direction	of flow	
		with- out		with spri	ing
		spring	1	\rightarrow	\downarrow
SB0 11	1" 11/4"	1	7	6	6
SB0 21	1" 11/4"	1	7	6	5
SB0 31	3/4" 1" 1 ¹ /4"	2	9	7	5

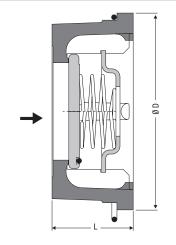
Pressure Drop Charts

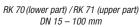

SB0 11, SB0 21

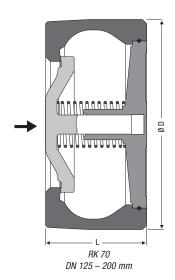
Curve 1: SBO 21 DN 1" Curve 2: SBO 11 DN 1"

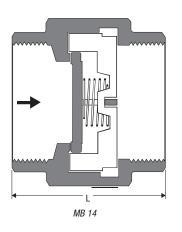
Curve 3: SBO 21 DN 11/4" Curve 4: SBO 11 DN 11/4"

SB0 31




Curve 1: SBO 31 DN 3/4"


Curve 2: SBO 31 DN 1"


Curve 3: SBO 31 DN 11/4"

Application and Features

Туре	PN	Application for liquids, gases and vapours	Features			
RK 70	PN 6	suitable for heating and hot-water installations	Centric cone and spring guide, unaffected by dirt (DN 125-200)			
RK 71	PN 16		Spiral centering ring for easy alignment between flanges			
MB 14	PN 16		Screwed socket end connection			

Body Material

Туре		Nominal sizes DN	EN reference	ASTM equivalent1)	
RK 70 Body Valve disk		15 – 100 mm	Brass (CW617N)	Brass	
			Plastic PPE	-	
	Body	125 – 200 mm	Grey cast iron (5.1301)	A126 Class A	
	Plug		Plastic Polyamid 6	-	
RK 71	Body	15 – 100 mm	Brass (CW617N)	Brass	
	Valve disk		1.4571	AISI 316 Ti	
MB 14 Body		15 – 50 mm	Brass (CW614N)	Brass	
	Valve disk		1.4571	AISI 316 Ti	

¹⁾ ASTM material similar to EN material.

Observe different physical and chemical properties!

Dimensions

	DN	[mm]	15	20	25	32	40	50	65	80	100	125	150	200
		[in]	1/2	3/4	1	1 ¹ / ₄	1 ¹ / ₂	2	21/2	3	4	5	6	8
	L	[mm]	16	19	22	28	31.5	40	46	50	60	90	106	140
RK 70	D	[mm]	40	47	56	72	82	95	115	132	152	184	209	264
RK 71	D	[mm]	40	47	56	72	82	95	115	132	152	-	_	_
	L	[mm]	49	49	61	61	72	72	-	-	-	-	-	_
MB 14	D	[mm]	42	42	62	62	83	83	-	-	-	-	-	-
	A.F.	[mm]	30	30	46	46	65	65	-	-	-	-	-	_

Pressure/Temperature Ratings

Туре	PN	DN	p / T / [bar] / [°C]				
RK 70	PN 6	15 – 100	6 / -10	3.0 / 50	2.0 / 80		
	PN 6 125 – 200		6 / -10	1.5 / 100	0.5 / 130		
RK 71	PN 16	15 – 100	16 / -10	16 / 180	13.5 / 200		
MB 14	PN 16	G 1/2 — G 2	16 / -10	14 / 200	13 / 250		

RK Designs

Туре		Sea	t			Spring		
	metal-to metal	EPDM	FPM	PTFE	without spring	special spring	Nimonic spring	Earthing connection
RK 70	(Plastic)	-	-	-	-	-	-	Use
RK 71	Х	Use F	RK 41	Use RK 86	Use RI	< 41 –		RK 86
MB 14	Х	-	-	-	-	-	-	_

X : standard- : not available

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .

The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

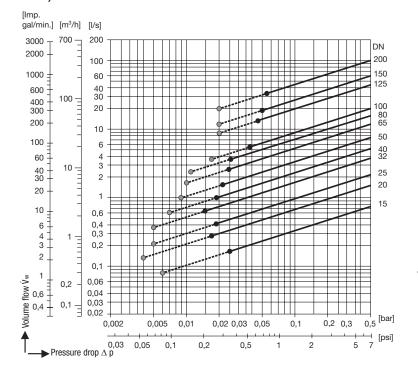
 \dot{V}_W = Equivalent water volume flow in [l/s] or [m³/h]

 ρ = Density of fluid (operating condition) in [kg/m³]

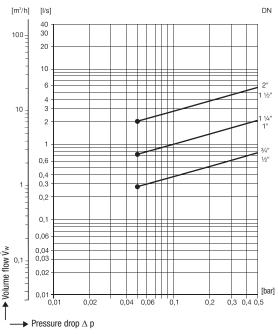
V = Volume of fluid (operating condition) in [l/s] or [m³/h]

Opening Pressures Differential pressures at zero volume flow.

RK 71*)

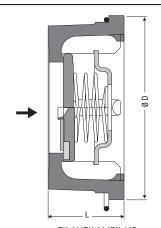

DN	Opening pressures [mbar]							
		Direction	n of flow					
	without spring	with spring						
	1	↑	\rightarrow	\downarrow				
15	2.5	10	7.5	5				
20	2.5	10	7.5	5				
25	2.5	10	7.5	5				
32	3.5	12	8.5	5				
40	4.0	13	9	5				
50	4.5	14	9.5	5				
65	5.0	15	10	5				
80	5.5	16	10.5	5				
100	6.5	18	11.5	5				

^{*)} RK 70, 71 are not available with special spring or without spring

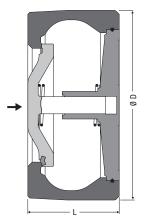

RK 70*)

DN	Оре	ening pres	sures [mb	ar]
		Direction	n of flow	
	without	'	with spring	ı
	spring			
	1	1	\rightarrow	\downarrow
15	0.4	5.8	5.4	5
20	0.4	5.8	5.4	5
25	0.4	5.8	5.4	5
32	0.5	6.0	5.5	5
40	0.5	6.0	5.5	5
50	0.6	6.2	5.6	5
65	0.7	6.4	5.7	5
80	0.8	6.6	5.8	5
100	0.9	6.8	5.9	5
125	2.0	9.0	7.0	5
150	2.5	10.0	7.5	5
200	2.5	10.0	7.5	5

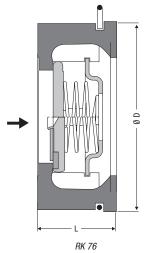
RK 70, RK 71



MB 14



- Required minimum volume flow W for equipment without spring installed in vertical pipes with upward flow (only RK 70, RK 71).
- Required minimum volume flow W for equipment with standard spring and horizontal flow.



RK 41/RK 44/RK 44S DN 15 – 100 mm

RK 41/RK 44/RK 44S DN 125 – 200 mm

RK 76 DN 15 – 100 mm

Application and Features

Туре	PN	Application	Features		
		for liquids, gases and vapours			
RK 41	PN 16	particularly suitable for heating and hot-water			
NK 41	111110	installations	4 guide ribs for low-wear operation		
RK 44	PN 16	for fresh water applications	of the valve plate		
RK 44S	PN 16	for sea water applications			
DV 76	PN 40	for industrial applications	specially designed spring cap provides		
RK 76	Class 300	ioi iliuusilai appiicaliolis	centrally aligned spring support		

Body Material

Туре		Nominal sizes DN	EN reference	ASTM equivalent ¹)		
RK 41	Body	15 – 100 mm	Brass (CW 617 N)	Special Brass		
Valve disk			1.4571	AISI 316 Ti		
	Body	125 – 200 mm	Grey cast iron (5.1301)	A126 Class B		
	Plug		1.4006	A182 F6		
RK 44	Body	15 – 100 mm	Bronze (CC480 K-GS)	B584 C90500		
Valve disk			1.4571	AISI 316 Ti		
	Body	125 – 200 mm	Grey cast iron (5.1301)	A126 Class B		
	Plug		Bronze (CC480 K-GS)	B584 C90500		
RK 44S	Body	15 – 100 mm	Bronze (CC480 K-GS)	B584 C90500		
	Valve disk		Bronze (CC483 K-GS)	B505 C90700		
	Body	125 – 200 mm	Bronze (CC483 K-GC)	B505 C90700		
	Plug		Bronze (CC480 K-GS)	B584 C90500		
RK 76	Body	15 – 100 mm	1.4107	A217-CA15		
	Valve disk		1.4571	AISI 316 Ti		

ASTM material similar to EN material.
 Observe different physical and chemical properties!

Dimensions

	DN	[mm]	15	20	25	32	40	50	65	80	100	125	150	200
		[in]	1/2	3/4	1	1 ¹ / ₄	1 ¹ / ₂	2	21/2	3	4	5	6	8
	L	[mm]	16	19	22	28	31,5	40	46	50	60	90	106	140
RK 41	D	[mm]	40	47	56	72	82	95	115	132	152	184	209	264
RK 44	D	[mm]	42	49	58	74	84	97	117	132	152	184	209	264
RK 44S	D	[mm]	42	49	58	74	84	97	117	132	152	184	209	264
RK 76	D	[mm]	45	55	65	75	85	98	118	134	154	_	_	_

Pressure/Temperature Ratings with metal-to-metal seat

Туре	PN / Class	Nominal sizes DN	p / T / [bar] / [°C]				
RK 41	PN 16	15 – 100	16 / -10	16 / 150	13.5 / 200		
KK 41	PN 16	125 – 200	16 / -10	12.8 / 200	9.6 / 300		
RK 44	PN 16	15 – 100	16 / -200	13.5 / 200	8 / 250		
NK 44	PN 16	125 – 200	16 / -10	12.8 / 200	9.6 / 300		
RK 44S	PN 16	15 – 200	16 / -200	13.5 / 2002)	8 / 2502)		
DV 76	PN 40	15 – 100	40.0 / -10	30.2 / 200	25.8 / 300		
RK 76	Class 300	15 - 100	49.6 / -10	35.7 / 200	31.6 / 300		

²⁾ If temperatures exceed 90 °C use valve without spring.

Designs

Туре		Sea	t					
	metal-to- metal	EPDM (-40 up to 150°C) ²)	FPM (–25 up to 200°C) ²)	PTFE (-190 up to 250°C) ²)	without spring	special spring	Nimonic spring	Earthing connection
RK 41	Х	0	0	-	0	0	-	
RK 44	Х	0	0	_	0	0	-	Use
RK 44S	Х	0	0	_	0	-	-	RK 86
RK 76	Х	0	0	0	0	0	0	1

²⁾ Observe pressure/temp. ratings of the equipment X: standard 0: optional -: not available

R

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph Vw.

The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

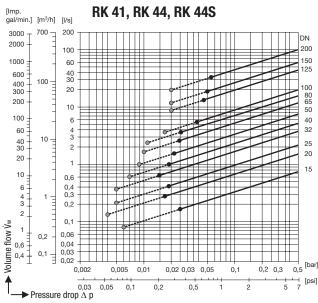
= Equivalent water volume flow in [l/s] or [m3/h]

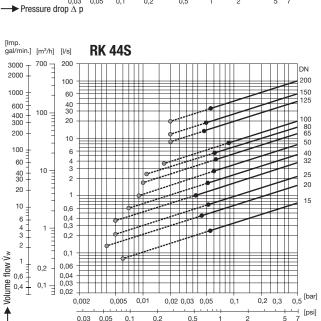
= Density of fluid (operating condition) in [kg/m3]

= Volume of fluid (operating condition) in [l/s] or [m3/h]

Pressure drop Δ p

Opening Pressures Differential pressures at zero volume flow.

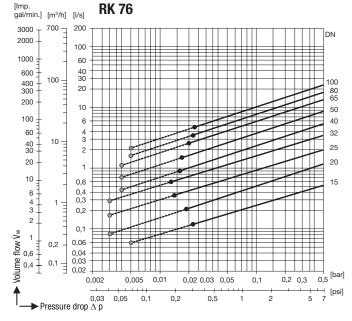

RK 41, RK 44, RK 761)


DN	Opening	pressures	[mbar]						
		Direction	of flow						
	without	'	with spring	I					
	spring								
	1	\uparrow	\rightarrow	↓					
15	2.5	10	7.5	5					
20	2.5	10	7.5	5					
25	2.5	10	7.5	5					
32	3.5	12	8.5	5					
40	4.0	13	9	5					
50	4.5	14	9.5	5					
65	5.0	15	10	5					
80	5.5	16	10.5	5					
100	6.5	18	11.5	5					
125	12.5	35	22.5	10					
150	14.0	38	24.0	10					
200	13.5	37	23.5	10					

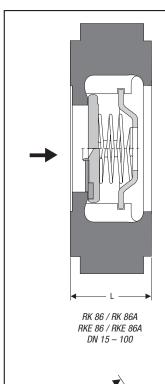
RK 44S

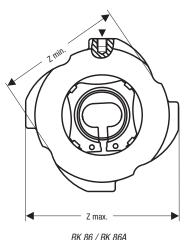
DN	Opening	pressures	[mbar]						
	Direction of flow								
	without	'	with spring	l					
	spring								
	1	↑	\rightarrow	↓					
15	2.5	25	22.5	20					
20	2.5	25	22.5	20					
25	2.5	25	22.5	20					
32	3.5	27	23.5	20					
40	4.0	28	24.0	20					
50	4.5	29	24.5	20					
65	5.0	30	25.0	20					
80	5.5	31	25.5	20					
100	6.5	33	26.5	20					
125	12.5	35	22.5	10					
150	14.0	38	24.0	10					
200	13.5	37	23.5	10					

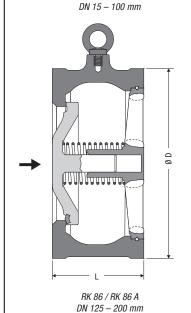
1) only DN 15-100



0,1


0,2


0,5


- Required minimum volume flow \dot{V}_W for equipment without spring installed in vertical pipes with upward flow.
- Required minimum volume flow \dot{V}_W for equipment with standard spring and horizontal flow.

RKE 86 / RKE 86A

RK 86, RK 86A, RKE 86, RKE 86A - Our Robust All-Rounder **Application and Features**

Туре	PN	Application for liquids, gases and vapours	Features						
RK 86 / RKE 86	PN 40	for industrial applications	patented fixed centering lugs for easy alignment between flanges and optimum quidance of valve						
RK 86A / RKE 86A	Class 300	particularly suitable for low temperatures, aggressive fluids, boiler feedwater lines	disk, earthing connection as standard, broad sealing surfaces. Only RKE non-return valves may be used as end valves (e.g. vacuum breakers).						

Body Material

Туре		Nominal sizes DN	EN reference	ASTM		
RK 86,	Body	15 – 100 mm	Chromium steel, 1.4317	A743-CA6-NM		
RKE 86 ²)	Valve disk		1.4571	AISI 316 Ti ¹)		
RK 86	Body	125 – 200 mm	GP240GH (1.0619)	A216 WCB		
RKE 86 ²)	Plug		1.4006	A182 F6 A		
RK 86A,	Body	15 – 100 mm	1.4408	A351 CF 8M		
RKE 86A ²)	Valve disk		1.4571	AISI 316 Ti ¹)		
RK 86A	Body	125 – 200 mm	1.4408	A351 CF 8M		
RKE 86A ²)	Plug		1.4404	A182 F316 L		

- 1) ASTM material similar to EN material.
 - Observe different physical and chemical properties!
- 2) RK 86/RK 86A and RKE 86 / RKE 86A differ from standard valves in having:
 - a valve disk made of material with inspection certificate 3.1
 - the strength test of valve disk 1.5 x PN

Dimensions and Weights

	DN	[mm]	15	20	25	32	40	50	65	80	100	125	150	200
		[inch]	1/2	3/4	1	11/4	11/2	2	21/2	3	4	5	6	8
	L	[mm]	16	19	22	28	31.5	40	46	50	60	90	106	140
	Z min.	[mm]	44	53	64	73	83	96	110	128	151	-	-	-
	Z max.	[mm]	67	76	82	93	104	118	136	158	186	_	_	_
PN 10/16	D	[mm]	-	_	_	_	_	_	_	_	_	194	220	275
PN 25	D	[mm]	_	_	_	_	_	_	_	-	_	194	226	286
PN 40	D	[mm]	-	_	_	-	_	_	_	-	_	194	226	293
Class 125/150) D	[mm]	-	_	_	-	_	_	_	-	_	194	220	275
Class 300	D	[mm]	_	_	_	_	_	-	_	ı	-	216	251	308
	Weight	[kg]	0.27	0.38	0.52	0.8	1.12	1.78	2.43	3.37	5.34	11	14	25

Pressure/Temperature Ratings with metal-to-metal seat

Туре	PN / Class	Nominal sizes DN	p / T / [bar] / [°C]					
RK 86,	PN 40	15 – 100	40.0 / -10	33.6 / 200	25.9 / 350 ³)			
RKE 86	Class 300	15 – 100	51.1 / -10	43.8 / 200	37.6 / 350			
RK 86	PN 40	125 – 200	40.0 / -10	33.6 / 200	24.0 / 400			
NN OO	Class 300	125 – 200	51.1 / -29	43.8 / 200	34.7 / 400			
RK 86A,	PN 40	15 – 100	40.0 / -200	30.2 / 200	20.7 / 550 ³)			
RKE 86A	Class 300	15 – 100	49.6 / -200	35.7 / 200	25.1 / 538 ³)			
DN OCV	PN 40	125 – 200	40.0 / -200	30.2 / 200	23.5 / 400 ³)			
RK 86A	Class 300	125 – 200	49.6 / -200	35.7 / 200	29.4 / 4003)			

If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

Designs

Туре		Se	at			Springs		Earthing connection	
	metal-to- metal	EPDM (–40 up to 150°C) ³)	FPM (–25 up to 200°C) ³)	PTFE 4)5)	without spring	special spring	Nimonic spring ⁶)	Connection	
RK 86(A)	Х	0	0	0	0	0	0	Х	
RKE 86(A)	Х	_	-	-	0	0	0	Х	

- Observe pressure/temp. ratings of the equipment DN 15-100 –190 °C up to 250 °C; DN 125-200 –60 up to 200 °C
- Required for temperatures above 300 °C
- X : standard 0 : optional

Short overall length according to DIN EN 558, series 49 (△ DIN 3202, part 3, series K4)

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .

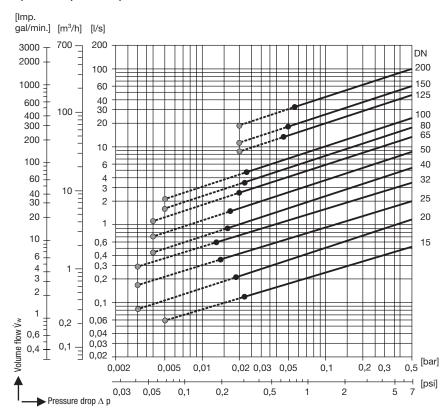
The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

 \dot{V}_W = Equivalent water volume flow in [l/s] or [m³/h]

 ρ = Density of fluid (operating condition) in [kg/m³]

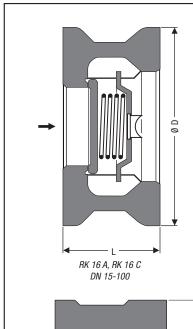
V = Volume of fluid (operating condition) in [l/s] or [m³/h]

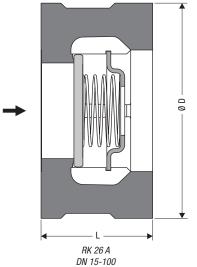

Opening Pressures

Differential pressures at zero volume flow.

RK 86, RK 86A, RKE 86, RKE 86A

DN	Ope		sures [mb	arj
		Direction	of flow	
	without	'	with spring	l
	spring ↑	↑	\rightarrow	\downarrow
15	2.5	10	7.5	5
20	2.5	10	7.5	5
25	2.5	10	7.5	5
32	3.5	12	8.5	5
40	4.0	13	9	5
50	4.5	14	9.5	5
65	5.0	15	10	5
80	5.5	16	10.5	5
100	6.5	18	11.5	5
125	12.5	35	22.5	10
150	13.5	37	23.5	10
200	14.0	38	24.0	10


RK 86, RK 86A, RKE 86, RKE 86A



- \blacksquare Required minimum volume flow \dot{V}_W for equipment without spring installed in vertical pipes with upward flow.
- Required minimum volume flow V_W for equipment with standard spring and horizontal flow.

Short overall length according to DIN EN 558, series 52 (≜ DIN 3202, part 3, series K5)

Application and Features

Тург	PN	Application for liquids, gases and vapours	Features			
RK 16C		for more aggressive fluids such as hydrochloric acid	about assemble to DIN 550 O corios 50 bish			
RK 16A	PN 40 Class 300	tomporataroo, aggrocorro maido,	short overall length to DIN 558-2, series 52, high- quality forged material (RK 16A / RK 16 C) material suitable for petrochemical industry			
RK 26A		boiler feedwater lines and industrial applications	,			

Body Material

Туре		Nominal sizes DN	EN reference	ASTM equivalent 1)		
RK 16A Body		15 – 100 mm	1.4571	AISI 316 Ti		
	Valve disk		1.4571	AISI 316 Ti		
RK 16C	Body	15 – 100 mm	2.4610	Hastelloy C		
	Valve disk		2.4610	Hastelloy C		
RK 26A	Body	15 – 100 mm	1.4408	A351 CF8M		
	Valve disk		1.4571	AISI 316 Ti		

ASTM material similar to EN material.
 Observe different physical and chemical properties!

Dimensions

		DN	[mm]	12	20	25	32	40	50	65	80	100
			[inch]	1/2	3/4	1	1 ¹ /4	11/2	2	21/2	3	4
		L	[mm]	25	31,5	35,5	40	45	56	63	71	80
RK 16 A		PN 10/16 PN 25/40	[mm]	52	63	72	81	93	108	128	143	163 169
RK 16 C	D	Class 150	[mm]	52	63	72	81	93	108	128	143	173
RK 26 A		Class 300	[mm]	52	63	72	81	93	108	128	143	179

Pressure/Temperature Ratings with metal-to-metal seat

Туре	PN / Class	Nominal sizes DN	p / T / [bar] / [°C]			
RK 16 A	PN 40	15 – 100	40.0 / -200	35.8 / 200	23.3 / 550²)	
NK IO A	Class 300	15 – 100	50.4 / -200	38.4 / 200	24.9 / 550²)	
RK 16 C	PN 40	15 – 100	40.0 / -200	36.0 / 200	32.0 / 400²)	
NK IO C	Class 300	15 – 100	51.7 / -200	48.3 / 200	36.5 / 4002)	
RK 26 A	PN 40	15 100	40.0 / -200	30.2 / 200	20.7 / 550²)	
NN 20 A	Class 300	15 – 100	49.6 / -200	35.7 / 200	25.1 / 538²)	

P) If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

Designs

	Seat							
Туре	meta-to- metal	EPDM (-40 up to 150°C) ³)	FPM (–25 up to 200°C) ³)	PTFE (–190 up to 250°C) ³)	without spring	special spring	Nimonic spring ⁴)	Earthing connection
RK 16 A	Χ	0	0	0	0	0	0	0
RK 16 C	Χ	_	-	-	0	-	-	0
RK 26 A	Χ	0	0	0	0	0	0	0

 $^{^{\}rm 3)}\,$ Observe pressure/temp. ratings of the equipment

X : standard 0 : optional - : not available

 $^{^{4}\!)}$ Required for temperatures above 300 °C.

Gestra

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .

The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W \ = \dot{V} \cdot \ \sqrt{ \ \frac{\rho}{1000} }$$

 \dot{V}_W = Equivalent water volume flow in [l/s] or [m³/h]

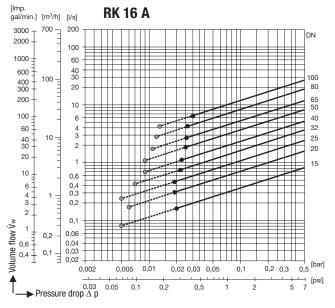
 ρ = Density of fluid (operating condition) in [kg/m³]

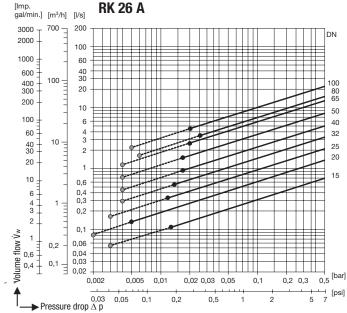
 V = Volume of fluid (operating condition) in [l/s] or [m³/h]

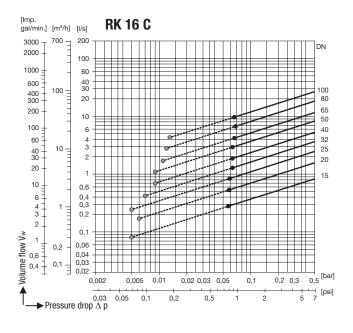
Opening Pressures

Differential pressures at zero volume flow.

RK 16 A, RK 26 A

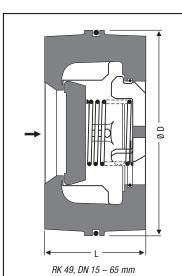

DN	Оре	ening pres	sures [mb	ar]	
		Direction	n of flow		
	without	ı ,	with spring	l	
	spring ↑	↑	\rightarrow	↓	
15	2.5	10	7.5	5	
20	2.5	10	7.5	5	
25	2.5	10	7.5	5	
32	3.5	12	8.5	5	
40	4.0	13	9	5	
50	4.5	14	9.5	5	
65	5.0	15	10	5	
80	5.5	16	10.5	5	
100	6.5	18	11.5	5	

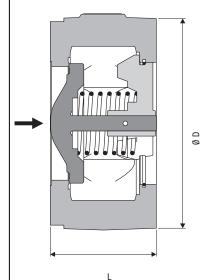

Opening Pressures


Differential pressures at zero volume flow.

RK 16 C

DN	Оре	ening pres	sures [mb	ar]
		Direction	n of flow	
	without		with spring	I
	spring	↑	\rightarrow	_
15	2.5	25	22.5	20
20	2.5	25	22.5	20
25	2.5	25	22.5	20
32	3.5	27	23.5	20
40	4.0	28	24.0	20
50	4.5	29	24.5	20
65	5.0	30	25.0	20
80	5.5	31	25.5	20
100	6.5	33	26.5	20





- Required minimum volume flow \dot{V}_W for equipment without spring installed in vertical pipes with upward flow.
- Required minimum volume flow V_W for equipment with standard spring and horizontal flow.

RK 49, DN 80 - 200 mm

Application and Features

Туре	PN	Application	Features
		for liquids, gases and vapours	
RK 49	PN 63 - 160 Class 400 - 900	suitable for high pressures and temperatures	double centric spring guidance (DN 15-65), centric cone & spring guide unaffected by dirt (DN 80, 100), installation in any position, spring made of Nimonic

Body Material

Туре		Nominal sizes DN	EN reference	ASTM equivalent 1)
RK 49 Body		15 – 65 mm	1.4581	A351 CF8
	Valve disk		1.4986	_
	Body	80 – 100 mm	1.7357	A217 WC6
	Plug		1.4923	_

ASTM material similar to EN material.
 Observe different physical and chemical properties!

Dimensions

RK 49	DN	[mm]	15	20	25	32	40	50	65	80	100
		[in]	1/2	3/4	1	11/4	11/2	2	21/2	3	4
	L	[mm]	25	31.5	35.5	40	45	56	63	71	80
	D	[mm]	54	63	74	84	95	110	130	147	173
W	eight	[kg]	0.43	0.7	1.0	1.4	2	3	4.7	7.1	12.1

Pressure/Temperature Ratings with metal-to-metal seat

Туре	PN / Class	Nominal sizes DN		p / T / [bar] / [°C]	
RK 49	PN 63 - 160	15 65	160.0 / -10	143.4 / 200	93.2 / 5502)
	Class 400 - 900	15 – 65	151.2 / -10	115.2 / 200	74.8 / 5502)
	PN 63 – 160	00 100	160.0 / -10	160.0 / 300	47.0 / 550²)
	Class 400 - 900	80 – 100	155.1 / -10	145.9 / 200	37.7 / 550 ²)

²⁾ If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

Seat tightness acc. to DIN EN 12266-1, leakrate C

For additional information on chemical resistance see GESTRA Information "Chemical Resistance"

Machining of seating faces acc. to EN 1092-1, form B2,

ASME B 16.5 RF (optional: ring joint facing)

Designs

		Se	at		Springs			Earthing	
Туре	metal-to- metal	EPDM	FPM	PTFE	without spring	special spring	Nimonic spring ³)	connection	
RK 49	Х	-	-	-	0	-	Х	0	

³⁾ Required for temperatures above 300 °C.

X : standard

0 : optional

- : not available

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .

Short overall length according to DIN EN 558, series 52

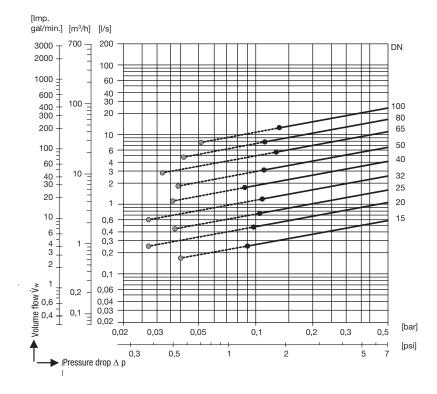
The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

 \dot{V}_W = Equivalent water volume flow in [l/s] or [m³/h]

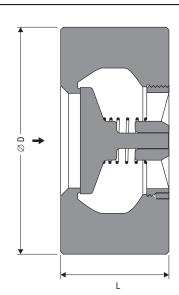
 $\begin{array}{ll} \rho & = \mbox{ Density of fluid} \\ & (\mbox{operating condition}) \mbox{ in [kg/m^3]} \end{array}$

V = Volume of fluid (operating condition) in [l/s] or [m³/h]

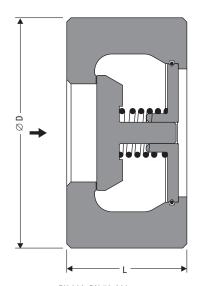

Opening Pressures

Differential pressures at zero volume flow.

RK 49


DN	Opening pressures [mbar]						
		Direction	n of flow				
	without spring	,	with spring	1			
	\$pring	1	\rightarrow	↓ ↓			
15	16.5	73	56.5	40			
20	17.5	74	57.0	40			
25	18.0	76	58.0	40			
32	18.0	76	58.0	40			
40	19.5	79	59.5	40			
50	22.0	84	62.0	40			
65	23.0	87	63.0	40			
80	17.5	75	57.5	40			
100	20.0	80	60.0	40			

RK 49


- Required minimum volume flow W for equipment without spring installed in vertical pipes with upward flow.
- Required minimum volume flow W for equipment with standard spring and horizontal flow.

RK 29 A, DN 15-40 mm PN 63/100/160/250/320/400 ASME Class 400/600/900/1500/2500

RK 29A, DN 50-100 mm PN 250/320/400 ASME Class 1500/2500

RK 29A, DN 50-200 mm PN 63/100/160 ASME Class 400/600/900

Application and Features

Туре	PN	Application	Features
		for liquids, gases and vapours	
RK 29 A	PN 63 - 400 Class 400 - 2500	for high pressure ratings and special tasks	for pressure ratings up to ON 400 / Class 2500, centric cone guide unaffected by dirt,adjusted diameter ensures optimum body centering,material suitable for petrochemical applications

Materials

Туре		Nominal sizes DN	EN reference	ASTM equivalent1)
RK 29A	Body	15 – 200 mm	1.4571	AISI 316 Ti
	Plug		1.4571	AISI 316 Ti

¹⁾ ASTM material similar to EN material. Observe different physical and chemical properties!

Dimensions

	DN	[mm]	15	25	40	50	80	100	150	200
		[inch]	1/2	1	11/2	2	3	4	6	8
	L	[mm]	35	40	56	56	71	80	125	160
PN 63	D	[mm]	63	84	105	115	149	176	250	312
PN 100	D	[mm]	63	84	105	121	156	183	260	327
PN 160	D	[mm]	63	84	105	121	156	183	260	327
PN 250	D	[mm]	74	84	111	126	173	205	-	-
PN 320	D	[mm]	74	95	121	136	193	232	_	-
PN 400	D	[mm]	80	106	138	153	210	259	-	-
Class 400	D	[mm]	54	73	95	111	149	176	247.5	304.5
Class 600	D	[mm]	54	73	95	111	149	193.5	266.5	320.5
Class 900	D	[mm]	63	79	98	142.5	168	205	288.5	358.5
Class 1500	D	[mm]	63	79	98	142.5	173	209.5	_	-
Class 2500	D	[mm]	69.5	84	117	146	196.5	234.5	_	-

Pressure/Temperature Ratings

1 100001107	iomporataro n	atingo			
Туре	PN / Class	DN		p / T / [bar] / [°C]	
RK 29 A	PN 63	15 – 200	63 / –200	56.4 / 200	36.7 / 5502)
	PN 100	15 – 200	100 / –200	89.6 / 200	58.2 / 550²)
	PN 160	15 – 200	160 / –200	143.4 / 200	93.2 / 550²)
	PN 250	15 – 100	250 / –200	224.1 / 200	145.6 / 550²)
	PN 320	15 – 100	320 / -200	286.8 / 200	186.4 / 550²)
	PN 400	15 – 100	400 / –200	358.5 / 200	232.9 / 550 ²)
	Class 400	15 – 200	67.0 / –200	51.2 / 200	33.2 / 550 ²)
	Class 600	15 – 200	100.8 / -200	76.8 / 200	49.9 / 550²)
	Class 900	15 – 200	151.2 / –200	115.2 / 200	74.8 / 550²)
	Class 1500	15 – 100	252.0 / -200	192 / 200	124.7 / 550 ²)
	Class 2500	15 – 100	420.0 / -200	320 / 200	207.9 / 5502)

²⁾ If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

Tightness of seat in accordance with DIN EN 12266-1, leakage rate D.

For information on chemical resistance go to www.gestra.de, click on "Service & Support" and then on

Sealing surfaces machined according to EN 1092-1, form B2, ASME B 16.5 RF smooth finish (63-125 μ in). Other designs available on request.

Designs

Туре		Se	at		Springs			
	metal-to- metal	EPDM (-40 up to 150°C) ³)	FPM (–25 up to 200°C) ³)	PTFE (-190 up to 250°C) ³)	without spring	special spring	Nimonic spring ⁴)	Earthing connection
RK 29A	Х	-	-	-	0	-	Χ	0

³⁾ Observe pressure/temp. ratings of the equipment

[&]quot;Chemical Resistance"

⁴⁾ Required for temperatures above 300 °C.

X : standard

^{0 :} optional

^{- :} not available

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .

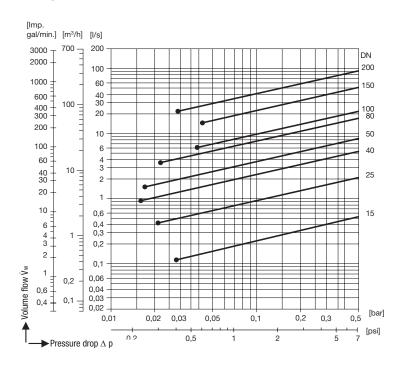
The values indicated in the chart are applicable to spring-assisted valves with horizontal flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

 $\dot{V}_W = \text{Equivalent water volume flow} \\ \text{in [l/s] or [m}^3/\text{h]}$

 ρ = Density of fluid (operating condition) in [kg/m³]

Volume of fluid (operating condition) in [l/s] or [m³/h]


Opening Pressures

Differential pressures at zero volume flow.

RK 29 A

DN			0	pening pres	sures [mba	r]			
				Direction	n of flow				
	withou	t spring	with s	spring	with:	spring	with:	spring	
		^		^	_	\rightarrow	,	\downarrow	
	PN 160	PN 400	PN 160	PN 400	PN 160	PN 400	PN 160	PN 400	
	CL 900	CL 2500	CL 900	CL 2500	CL 900	CL 2500	CL 900	CL 2500	
15	6	6	22	22	16	16	10	10	
25	8	8	26	26	18	18	10	10	
40	10	10	30	30	20	20	10	10	
50	10	10	30	30	20	20	10	10	
80	11	13	32	36	21	23	10	10	
100	12	24	34	58	22	34	10	10	
150	18	-	46	-	28	-	10	_	
200	21	-	52	-	31	-	10	-	

RK 29A

 \blacksquare Required minimum volume flow \dot{V}_W for equipment with standard spring and horizontal flow.

Special Springs for Non-Return Valves Type RK 16A, RK 26A, RK 41, RK 44, RK 76, RK 86 and RK 86A

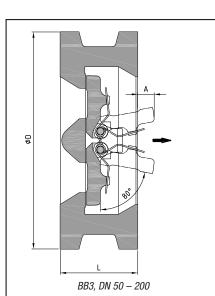
Application:

RK valves with special springs can be used for protecting and/or relieving the safety valve. Special springs can occassionally also assume the function of a pressure-maintaining valve. Note that RK valves with special springs must not be used as item of equipment with fail-safe function.

Opening pressure 1)						Size	e DN					
(mbar)	15	20	25	32	40	50	65	80	100	125	150	200
without spring						Х						
5					Standard 5)					Х	Х	Х
10											Standard	
20	_	-	_	-	-	_	_	_	-	Х	Х	Χ
40	_	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
70	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
100	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
200	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
300	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
400	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
500	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
700	Х	Х	Х	Х	Х	Х	Х	Х				
1000	Х	Х	Х	Х	Х	X	2 X	2 X	2 χ			
1500			2 X	2 χ	2 χ	2 X	, ,	^	2 χ		,	
2000			2 X	Λ.	2 X	2 X	2 X	2 X	2 X			
2500			2 X	2 X	2 χ	2 X	2 X	2 χ	2 χ			
3000			2 χ	2 χ	2 X	2 χ	2 χ	2 χ	2 χ			
Nimonic ³) 5	Х	Х	Х	Х	Х	Х	Х	Х	Х	X4)	X4)	X4)

 $^{^{1}}$) The opening pressure ratings (deviations \pm 15 % possible) refer to vertical installation with downward flow.

Design with disc springs only for RK 16A, RK 26A, RK 86 and RK 86A available.


Disc springs cannot be supplied individually. Retrofitting not possible.


- 3) Special springs made of Nimonic only available for RK 16A, RK 26A, RK 86 and RK 86A.
- 4) Opening pressure 10 mbar.
- $^{5}\!)$ The standard opening pressure was changed from 20 mbar to 5 mbar.

With these sizes and opening pressures reduced lifts of the valve disc / cone and, consequently, increased resistances must be taken into account

Short overall length according to DIN EN 558, series 16 ASME series with short overall length to API 594

BB, DN 250 - 500

Application and Features

Туре	PN	Application for liquids, gases and vapours	Features
BB EN BB ASME	PN 10 – 40 Class 150 – 300	suitable for heating, air-conditio- ning, water supply and cooling installations, for applications where minimum pressure loss is required, for frequency-controlled pumps	top quality, minimum pressure loss, for horizontal and vertical installations, stable operation when partly open (horizontal), downward flow (special spring), 2 hinge pins, 4 springs to close, disc plates with individually suspended stop lugs, swing stop for stable opening position, angle when fully open: 80°, coated or with closing damper and bore for earthing

Materials

Design	Part designation	Nominal size DN	EN reference	ASTM equivalent ¹)
Grey cast iron	Body	150 – 500	5.1301	A 126 Class A
(BB G)	Dual plate	150 – 500	5.3106	A 536 60-40-18
Carbon steel	Body	50 - 500	1.0619	A 216 WCB
(BB C)	Dual plate	50 - 80	1.4404	A 182 F316L
	Dual plate	100 – 500	1.0619	A 216 WCB
Stainless steel	Body	50 - 500	1.4408	A 351 CF8M
(BB A)	Dual plate	50 - 80	1.4404	A 182 F316L
	Dual plate	100 – 500	1.4408	A 351 CF8M

¹⁾ Physical and chemical properties comply with EN grade.

Pressure/Temperature Ratings with metal-to-metal seat

EN series	Туре		PN	Max. service pressure [bar] at temperature [°C] 2)					
EN Series			PN	20	300	450	550		
Grev cast iron	BB	11G / 21G	PN 6	6	3.6	_	-		
down to -10 °C at		12G / 22G	PN 10	10	6.0	_	_		
nominal pressure		14G / 24G	PN 16	16	9.6	-	-		
	BB	12C/22C/32C	PN 10	10	7.0	3.7	-		
Carbon steel down to -10 °C at		14C/24C/34C	PN 16	16	11.1	5.9	-		
nominal pressure		15C/25C/35C	PN 25	25	17.4	9.2	_		
-		16C/26C/36C	PN 40	40	27.8	14.7	-		
	BB	12A/22A/32A	PN 10	10	6.4	5.7	5.2		
Stainless steel ³) down to -200 °C at		14A/24A/34A	PN 16	16	10.3	9.1	8.3		
nominal pressure		15A/25A/35A	PN 25	25	16.1	14.1	12.9		
-		16A/26A/36A	PN 40	40	25.8	22.6	20.7		

ASME	Туре	Class	Max. se	rvice press	ure [bar] at	temperatur	e [°C] ²)
series			20	300	425	450	538
Carbon steel down	DN 50 - DN 500						
to -29 °C	BB 15C/BB 25C/BB 35C	150	19.6	10.2	5.5	-	_
at nominal pressure	BB 16C/BB 26C/BB 36C	300	51.1	39.8	28.8	-	-
Stainless steel ³)	DN 50 - DN 500						
down to –200 °C at	BB 15A/BB 35A	150	19.0	10.2	5.5	4.6	1.4
nomial pressure	BB 16A/BB 36A	300	49.6	31.6	29.1	28.8	25.2

²⁾ For temperatures above +300 °C special springs of Inconel X 750 are required.

³⁾ If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

	1		
Seat gasket	Temperature [C°]	Seat gasket	Temperature [C°]
EPDM	-40 up to +150	FPM (FKM)	-25 up to +200
NBR	-30 up to +110	PTFE / FPM	-25 up to +200 (from DN 150)

DISCOCHECK® Dual-Plate Check Valves BB

Short overall length according to DIN EN 558, series 16 ASME series with short overall length to API 594

Minimum volume flow [m3/h]

Flow direction	1	_	→	_	→
Spring type	without spring	with spr	ing 7 WA	with spr	ing 2 WA
DN	fully open	stable partial fully open opening*)		stable partial opening*)	fully open
50	12	4	9	3	7
65	18	5	17	3,5	12
80	30	6	25	4	18
100	65	7	58	5	38
125	105	10	70	6	40
150	130	12	70	9	44
200	320	30	230	20	170
250	480	50	300	30	200
300	750	78	500	42	360
350	950	140	600	80	380
400	1300	200	800	110	460
450	1800	250	900	130	550
500	2300	280	1200	160	650

Values based on water at 20 °C

If the flowrate is below the minimum volume flow (instable area) increased wear and noise are to be expected.

Opening Pressures

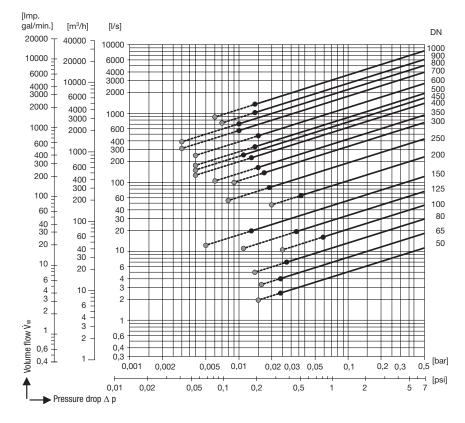
Differential pressures at zero volume flow.

Flow direction		1	\rightarrow	↓
Spring type	without spring	7 WA	7 WA1)	5 VO
DN	0p	ening pres	ssures [mb	ar]
50	6	13	7	5
65	6	13	7	5
80	7	14	7	5
100	7	14	7	5
125	10	17	7	5
150	11	18	7	5
200	12	19	7	5
250	14	21	7	5
300	15	22	7	5
350	17	24	7	5
400	19	26	7	5
450	22	29	7	5
500	23	30	7	5

^{1) 2}WA spring, opening pressure 2 mbar

Pressure Drop Chart

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .


The values indicated in the chart are applicable to valves equipped with standard spring 7 mbar and horizontal flow as well as valves with special spring 2 mbar and horizontal flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

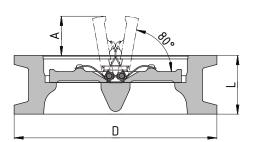
 \dot{V}_W = Equivalent water volume flow in [I/s] or [m³/h]

 $\begin{array}{ll} \rho & = \mbox{ Density of fluid} \\ & \mbox{ (operating condition) in [kg/m^3]} \end{array}$

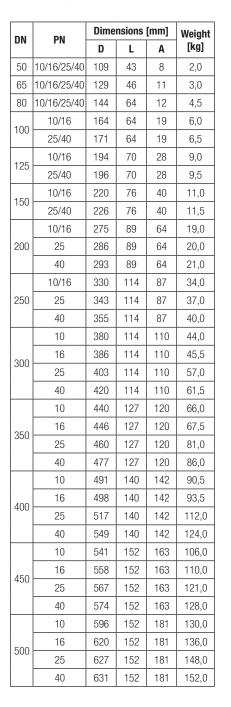
V = Volume of fluid (operating condition) in [l/s] or [m³/h]

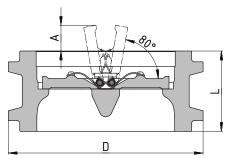
- Required minimum volume flow V_W for valves with special spring 2 WA and horizontal flow.
- \blacksquare Required minimum volume flow \dot{V}_W for valves with standard spring 7 WA and horizontal flow.

^{*)} Provide stabilizing leg (at least 5 times DN upstream and twice DN downstream of the equipment).


DISCOCHECK® Dual-Plate Check Valves BB

Short overall length according to DIN EN 558, series 16


ASME series with short overall length to API 594, ASME series with short overall length to DIN EN 558



Dimensions and Weights

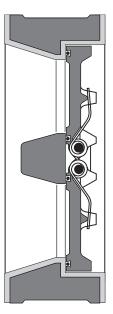
EN series BB 3 ... short overall length as per DIN EN 558, series 16

ASME series
BB 3...ASME
face to face dimension as per API 594

NPS/	Class	Dime	nsions	[mm]	Weight	
DN	Glass	D	L	Α	[kg]	
2/	150	105	60	0	2,5	
50	300	111	60	0	3,0	
2½/	150	124	67	0	3,5	
65	300	130	67	0	4,0	
3/	150	137	73	5	4,5	
80	300	149	73	5	5,0	
4/	150	175	73	10	7,5	
100	300	181	73	10	8,0	
5/	150	197	86¹)	12	11,0	
125	300	216	86¹)	12	13,0	
6/	150	222	98	25	15,5	
150	300	251	98	25	19,0	
8/	150	279	127	51	27,5	
200	300	308	127	51	31,0	
10/	150	340	146	72	46,0	
250	300	362	146	72	60,0	
12/	150	410	181	76	80,0	
300	300	422	181	76	82,5	
14/	150	451	184	57	99,0	
350	300	486	222	66	123,5	
16/	150	514	191	115	134,5	
400	300	540	232	94	164,0	
18/	150	549	203	138	152,0	
450	300	597	264	107	207,0	
20/	150	606	219	148	201,0	
500	300	654	292	111	274,0	

¹⁾ Non-standard face to face dimension

ASME series


BB 3 ... ASME short overall length as per DIN EN 558, series 16 (Replaces BB 1...ASME and BB 2...ASME)

(· I· ·					- /
NPS/	Class	Dime	nsions	[mm]	Weight
DN	Glass	D	L	Α	[kg]
6/	150	222	76	36	11,5
150	300	251	76	36	16,0
8/	150	279	89	70	19,5
200	300	308	89	70	24,5
10/	150	340	114	88	36,0
250	300	362	114	88	44,0
12/	150	410	114	109	58,5
300	300	422	114	109	61,0
14/	150	451	127	113	78,5
350	300	486	127	113	88,0
16/	150	514	140	140	110,0
400	300	540	140	140	120,0
18/	150	549	152	163	116,0
450	300	597	152	163	157,0
20/	150	606	152	181	142,0
500	300	654	152	181	192,0

Short overall length according to DIN EN 558, series 16 ASME series with short overall length to API 594

BB with lining from DN 150

Hard-rubber lining

BB with Lining

Application and Features

Туре	PN	Application for liquids, gases and vapours	Features
BBGS	PN 10 – 16	for salty fluids such as sea water	hard rubber coating for protection against abrasive media, thickness of coating 3 - 5 mm

Materials

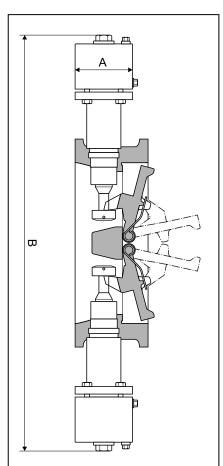
Made from grey cast iron (BB.. GS)

Component	EN number	ASME1)
Body	EN-JL 1040	A126B
Dual plates for equipment with lining and internals made from austenitic steel	1.4408	A351CF8M
Support and hinge pin	1.4571	A316Ti
Springs	1.4571	A316Ti
Dual plates for equipment with lining and internals made from bronze	CC332G	2)
Support and hinge pin	CW453K	C51900
Springs	CW452K	C52100

¹⁾ Equipment made from grey cast iron that complies with ASME specification is not available. The equivalent material specifications are stated for guidance only. Physical and chemical properties of the materials can therefore differ from the materials in accordance with ASME specification. For more details please contact the manufacturer.

Lining materials for BB.. GS

Hard rubber based on isoprene rubber (IR), shore D hardness 75±5, max. thickness of layer 3-5 mm.


Temperature Limits

Hard rubber lining -10°C up to 90°C

²⁾ There is no ASME equivalent for the EN material.

Short overall length according to DIN EN 558, series 16 ASME series with short overall length to API 594

BB with patented adjustable dampers, DN 200 – 500.

BB with Dampers *)

Application and Features

Туре	PN	Application for liquids	Features
BB EN	PN 10 -	e. g. for water supply and cooling installations, if waterhammer occurs in pipes conducting	slows down the closing process of the non-return valve, reduces the speed of
BB ASME	Class 150 -	liquids, for preventing damage to the plant. To evaluate potential waterhammer problems please aks for our questionnaire.	return flow, damper does not change the overall length of the equipment, dampening cylindre made of rustproof material

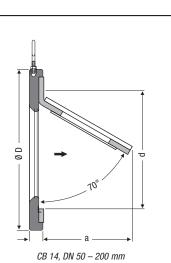
Materials

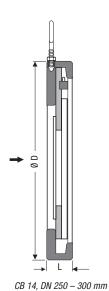
Component	EN	ASME1)
Hinge pin	1.4122	-
Guide bush, flange, cover	1.4104	AISI430F
Gasket	1.4571	AISI316Ti
0 ring, inside	NBR	_

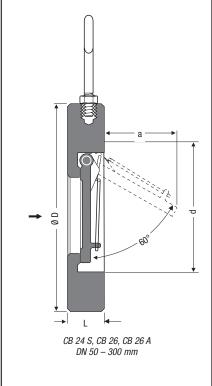
¹⁾ The equivalent material specifications are stated for guidance only. Physical and chemical properties of the materials can therefore differ from the materials in accordance with ASME specification.

Dimensions and Weights of Equipment with Closing Dampers

DN	200	250	300	350	400	500
NPS	8	10	12	14	16	20
A [mm]		9		12	20	
B [mm] ¹)	600	665	715	755	900	995
Weight [kg]1)	33	48	60	82	121	197


¹⁾ The indicated values are based on equipment PN 16. Specifications for other equipment types available on request.


Pressure/Temperature Ratings


Size DN	[mm]	200	250	300	350	400	500
SIZE DIN	[inch]	8	10	12	14	16	20
Max. service pressure	[bar]	16	16	13	9	13	9
Max. service temperature	[°C]	2] 110					
Max. admissible pressure at line leading to the valve (pump switched off)	[bar]	0.5					

^{*)} Not suitable for BB with coating

Application and Features

Туре	PN	Application	Features
		for liquids, gases and vapours	
CB 14	PN 16	particulaly suitable for water and compressed air	rubber-elastic hinge, low weight
CB 24S	PN 16	for salty fluids such as sea water	compact design, 2 bow springs, flap disc
CB 26	PN 40	for industrial applications	with stop for pipe protection, approved by Germanischer Lloyd, CB 24S also approved
CB 26A	PN 40	for low temperatures and aggressive fluids	by Bureau Veritas

Materials

Туре	Part designation	Nominal sizes DN	EN reference	ASTM ¹) equivalent
CB 14	Body	50 – 300 mm	1.0460 galvanized	A 105 galvanized
	Flap	50 – 300 mm	NBR	NBR
CB 24 S	Body	50 – 100 mm	Bronze (CC 483K-GS)	B 505 C 90 700
		125 – 300 mm	Bronze (CC 332G)	B 148 Alloy 952
	Flap	50 – 300 mm	Bronze (CC 332G)	B 148 Alloy 952
CB 26	Body	50 – 200 mm	1.0460	A 105
		250 – 300 mm	1.0460	A 105
	Flap	50 – 150 mm	1.4581	A 351 CF 8 MC
		200 – 300 mm	5.3103	-
CB 26 A	Body	50 – 250 mm	1.4571	AISI 316 TI
		300 mm	1.4581	A 351 CF 8 MC
	Flap	50 – 300 mm	1.4581	A 351 CF 8 MC

¹⁾ Physical and chemical properties comply with EN grade.

Pressure/Temperature Ratings

Туре	Nominal sizes DN	PN	p / T / [bar] / [°C]			
CB 14	50 – 300	PN 16	16 / -10	6.0 / 60	4.0 / 80	
CB 24 S	50 – 300	PN 16	16 / -200	16.0 / 90	15.6 / 250²)	
CB 26	50 – 150	PN 40	40 / -10	33.6 / 200	17.1 / 420²)	
	200 – 300	PN 40	40 / -10	33.3 / 200	27.6 / 300	
CB 26 A	50 – 300	PN 40	40 / -10	35.8 / 200	28.0 / 4502)3)	

²) Max. pressure/temperature rating for CB without springs.

CB Designs

Тур				Springs			
	metal-to-metal	NBR (-30 up to 110°C) ⁴)	EPDM (-40 up to 150°C)4)	FPM (-25 up to 200°C) ⁴)	PTFE ⁶) (–25 up to 200°C) ⁴)	without spring	special spring
CB 14	-	X ₆)	-	-	-	Х	-
CB 24S	0	Χ	0	0	-	0	-
CB 26	0	-	Х	0	0	0	-
CB 26A	0	-	Х	0	0	0	_

⁴⁾ Observe pressure / temp. ratings of the equipment

Weights and Dimensions

Nomina	l size		Dimensions [mm]					V	Veight [ko]		
DN			CB	14	_	_	24 S, CB	26, CB 2		CB14	CB 24 S	CB 26
[mm]	[in]	D	L	a	d ⁷)	D	L	a	d')	0514	00240	CB 26 A
50	2	98	14	45	47	98	17	40	50	0.7	0.9	0.9
65	21/2	118	14	60	64	118	20	50	64	1.0	1.4	1.4
80	3	134	14	70	75	132	24	58	75	1.4	2.0	2.0
100	4	154	14	90	98	154	27	72	99	1.5	3.1	3.1
125	5	184	16	115	124	184	32	88	125	2.5	5.2	5.3
150	6	209	16	145	148	209	32	112	144	3.3	6.7	6.9
200	8	264	18	185	196	264	42	150	198	5.5	13.7	14.1
250	10	319	35	220	242	319	47	182	244	11.2	22.9	23.6
300	12	375	43	270	288	375	52	216	292	14.0	32.8	33.8

⁷⁾ Minimum flange bore and inside pipe diameter.

³⁾ If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

⁵⁾ Cover FPM ring with PTFE

X : standard

⁶⁾ Flap made from NBR (Perbunan) Temp. range: -10 °C up to 80 °C

^{0 :} optional - : not available

K2

Pressure Drop Charts

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph Vw.

The values indicated in the chart are applicable for springassisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

Opening Pressures

Differential pressures at zero volume flow.

Туре	DN [mm]	Opening pressures [mbar] Direction of flow		
		1	\rightarrow	↓ ↓
CB 14	50 – 150	8	0	1)
	200 – 300	15	0	,

Туре	DN [mm]	Opening pressures [mbar] Direction of flow without with spring spring ↑ ↑ →		,	
CB 24 S	50 – 150	5	12	7	
	200 – 300	8	15	7	
CB 26/	50 – 80	5	12	7	1)
CB 26 A	100 – 150	11	18	7	
	200 – 300	18	25	7	

¹⁾ Valves should not be used for downward flow applications, since the spring will not close the valve flap.

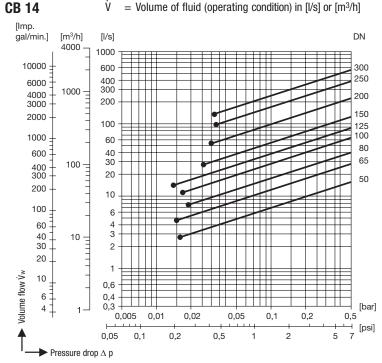
Minimum volume flow CB 14

DN	Minimum volume flows [m³]				
	for full opening				
	↑	\rightarrow			
50	12	10			
65	18	17			
80	29	28			
100	42	41			
125	55	51			
150	140	100			
200	260	190			
250	460	360			
300	610	500			

Values refer to water at 20°C.

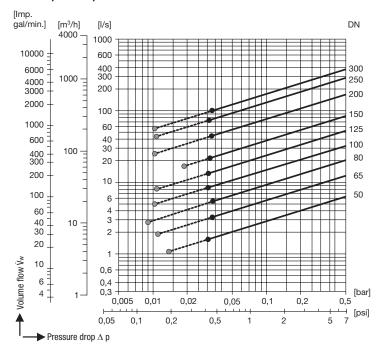
Minimum volume flow CB 24 S, 26, 26 A

DN	Minimum volume flows [m³]					
	for full opening					
	without spring	with s	spring			
	1	1	\rightarrow			
50	4	6	6			
65	7	10	12			
80	10	20	20			
100	18	30	30			
125	30	40	48			
150	60	70	80			
200	90	150	160			
250	160	220	260			
300	200	300	360			

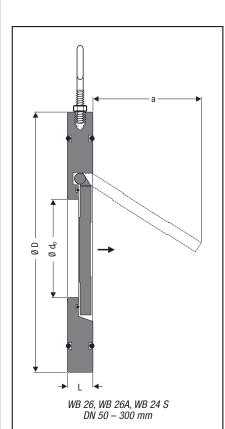

Values refer to water at 20°C.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

= Equivalent water volume flow in [l/s] or [m³/h]


= Density of fluid (operating condition) in [kg/m³]

= Volume of fluid (operating condition) in [l/s] or [m³/h]


 \blacksquare Required minimum volume flow \dot{V}_W for equipment installed in horizontal pipes.

CB 24 S, CB 26, CB 26 A

- Required minimum volume flow V_W for equipment without spring installed in vertical pipes with upward flow.
- Required minimum volume flow \dot{V}_W for equipment with standard spring and horizontal flow.

Application and Features

Туре	PN	Application for liquids, gases and vapours	Features
WB 24S	PN 16	for salty fluids such as sea water	without spring, eye bolt for easy installation,
WB 26	PN 16	for industrial applications	O-ring of NBR for flange sealing, short overall
WB 26A	PN 16	for aggressive fluids	length

Materials

Туре		ASTM reference	EN 1) equivalent
WB 26	Body	Carbon steel, galvanized	Carbon steel, galvanized
	Flap	AISI 316	1.4401
WB 26 A	Body	AISI 316	1.4401
	Flap	AISI 316	1.4401
WB 24 S	Body and flap	Aluminium bronze	Aluminium bronze
0-rings		NBR as sta	ındard

¹⁾ Physical and chemical properties comply with ASTM grade.

Weights and Dimensions

Nominal	size DN		Weight ⁵)			
[mm]	[in]	L	\varnothing D	a	$\varnothing d_0$	[kg]
50	2	14	109	35	32	0.95
65	21/2	14	129	48	40	1.2
80	3	14	144	60	54	1.6
100	4	18	164	78	70	2.5
125	5	18	195	98	92	3.5
150	6	20	220	116.5	112	4.7
200	8	22	275	160	154	7.6
250	10	26	330	200	200	13.2
300	12	32	380	235	240	20.5

 $^{^{5})}$ The weight ratings apply for WB 26 and WB 26 A. WB 24 S reduced by approx. 5 %.

Pressure/Temperature Ratings

Nominal pressure	PN	PN 16
Design with 0-rings 2)		NBR
Max. service pressure	[bar]	16
Related temperature	[°C]	110
Min. temperature ³)	[°C]	-10

²) O-rings in flap and valve faces made of NBR as standard.

WB Design

Туре		Springs					
	metal-to- metal	NBR (-30 up to 110°C) ⁴)	EPDM (-40 up to 150°C) ⁴)	FPM (–25 up to 200°C) ⁴)	PTFE (–25 up to 200°C) ⁴)	without spring	special spring
WB 24S	0	Х	Use CB 26	0	-	Х	-
WB 26	0	Х	Use CB 26	0	Use CB 26	Х	-
WB 26A	0	Х	Use CB 26A	0	Use CB 26A	Х	-

⁴⁾ Observe pressure/temp. ratings

X : standard
0 : optional
- : not available

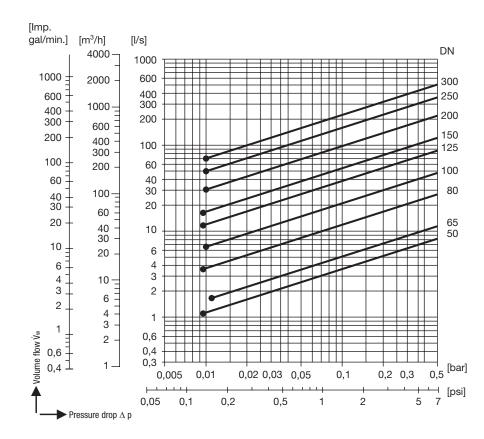
³⁾ Minimum temperature for nominal pressure rating.

Pressure Drop Chart

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph \dot{V}_w .

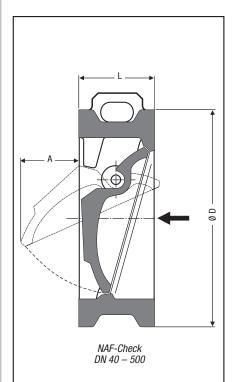
The values indicated in the chart are applicable to equipment installed in horizontal pipes.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$


 $\dot{V}_W = \text{Equivalent water volume flow} \\ \text{in [l/s] or [m}^3/h]$

 ρ = Density of fluid (operating condition) in [kg/m³]

V = Volume of fluid (operating condition) in [l/s] or [m³/h]


Opening Pressures

Opening pressure zero when valve is installed in horizontal line.

Required minimum volume flow V_W for equipment installed in horizontal pines.

Application and Features

Туре	PN	Application for liquids, gases and vapours	Features
NAF-Check	PN 10 – 40	particularly suitable for fibrous media, e. g. in paper industry	excellent hydrodynamic properties, excentric flap suspension, low resistance coefficient

Materials

Design	Part designation	Nominal size DN [mm]	EN / ASME	Equivalent
		40 – 50	1.4404	A316 L
	Dadu	65 – 200	1.4308	A351 CF8
	Body	250	1.4408	A351 CF8M
Steel		300 – 500	1.0619	ASTM A 216 WCB
	Flon	40 + 50	ASTM A487 Gr CA6NM	EN 1.4313
	Flap	65 – 500	1.4317	ASTM A743
	Dadu	40 – 50	1.4406	ASTM A316 L
Stainless steel	Body	65 – 500	1.4408	ASTM A351 CF8M
	Flap	40 – 500	1.4470	ASTM A890

Weight and Dimensions

_	PN	DN	ı	Weight		
Туре		[mm]	D	_ L -	A	[kg]
526 620¹) 526 630²) 528 620¹) 528 630²)	PN 10 – 40	40	84	33	15	1.2
		50	92	43	5	1.7
		65	108	46	12	1.7
		80	128	64	16	3
		100	158	64	26	5
		125	180	70	36	7
		150	203	76	51	9
		200	263	89	71	16
		250	315	114	90	28
526 520¹) 528 530²) 528 520¹) 528 530²)	PN 10 – 25	300	370	114	125	41
		350	432	127	146	48
		400	480	140	175	65
		450	530	152	188	94
		500	592	152	228	115

DN 600 - DN 1000 on request

Pressure/Temperature Ratings

Decim	Туре	PN	DN [mm]	Max. service pressure [bar] / related temperatures [°C] ³)										
Design				20	100	150	200	250	300	350	400	450	500	525
Steel down to -10 °C at	526 620/30	PN 40	40 – 250	40.0	36.3	32.7	26.9	27.6	25.7	24.5	23.8	-	-	-
nominal pressure	526 520 / 30	PN 25	300 - 500	25.0	23.2	22.0	20.8	19.0	17.2	16	14.8	_	-	_
Stainless steel ⁴)	528 620/30	PN 40	40 – 250	40.0	40.0	36.3	33.7	31.8	-	-	-	-	-	-
down to -30 °C at nominal pressure	528 520/30	PN 25	300 – 500	25.0	25.0	22.7	21.0	19.8	_	_	_	_	-	_

³⁾ Max. temperature rating for design with spring: + 300 °C.

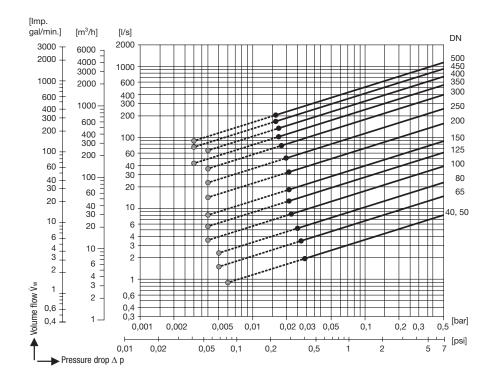
¹⁾ without spring
2) with spring

⁴⁾ If the operating temperatures exceed 300 °C intercrystalline corrosion may occur. Do not subject the equipment to operating temperatures higher than 300 °C unless intercrystalline corrosion can be ruled out.

EN Series, short overall length to DIN EN 558, table 2, series 16 (corresponds to DIN 3202, part 3, series K 3)

Pressure Drop Chart

The curves given in the chart are valid for water at 20 °C. To read the pressure drop for other fluids the equivalent water volume flowrate must be calculated and used in the graph Vw.


The values indicated in the chart are applicable for spring-assisted valves with horizontal flow and to valves without spring installed in vertical pipes with upward flow.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$

 \dot{V}_W = Equivalent water volume flow in [l/s] or [m3/h]

= Density of fluid (operating condition) in [kg/m³]

= Volume of fluid (operating condition) in [l/s] or [m³/h]

- Required minimum volume flow \dot{V}_W for equipment without spring installed in vertical pipes with upward flow.
- Required minimum volume flow \dot{V}_W for equipment with standard spring and horizontal flow.

E-mail: info@de.gestra.com

Type of fluid*)	
Density of fluid	kg/m ³
Service pressure	bar
Service temperature	°C
Volume flow	Nm³/h
Maximum admissible pressure drop	mbar
Nominal size Pressure rating	
For installation between EN flanges ASME flanges The second se	
Type of non-return / check valves Non-return valve Swing check valve	Dual-plate check valve
Installed in horizontal pipeline	
uertical pipeline with upward flow	
uertical pipeline with downward flow	
Required inspections / approvals:	
Your details:	
Company	
Name / job title	
Telephone	
Fax	
E-mail	
Date	

*) If the fluid is not water a detailed analysis (concentration, solid matter, pH value etc.) is required.

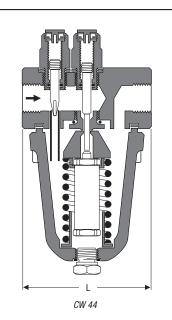
GESTRA DISCOCHECK Dual-Plate Check Valves BB

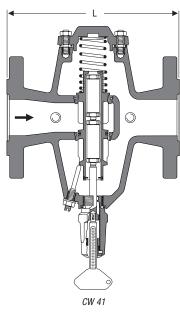
These top-quality dual-plate check valves considerably reduce operating costs by providing reliable, wear-resistant operation for extended service life and, at the same time, requiring little maintenance and low expenditure of pump wear.

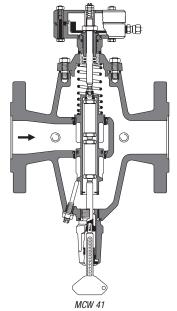
GESTRA Control Valves GCV

General service control valves

Designed to meet the demands of today's industries, the GESTRA Control Valve GCV is robust, innovative and cost effective.


- > Adaptable to your needs
 - a highly flexible modular design to meet your process requirements
- > Set and forget
 - designed for steam and other industrial fluids giving exceptional valve life, easy commissioning and low maintenance requirements
- > Improved working environments
 - noise and emission reducing options
- > Available in a wide range of sizes and connections




- **A4** Return-Temperature Control Valves
- **A4** Self-Acting Pressure and Temperature Controllers
- **A4 Control Valves**
- **A6 Safety Valves**
- **A7 Strainers**
- **A8 Stop Valves**

	Page
Return-Temperature Control Valves	_
Cooling-Water Control Valves CW GESTRAMAT	70 – 71
Return-Temperature Control Valves BW KALORIMAT	72 – 74
Self-Acting Pressure and Temperature Controllers	
Pressure-Reducing Valves 5801	75
Pressure-Maintaining Valves 5610	76
Self-Acting Temperature Controllers	77 – 79
Control Valves	
Control Valves with Electric or Pneumatic Actuator	80
Control Valves ZK with Radial Stage Nozzle	81 – 84
Questionnaire for sizing ZK valves with radial stage nozzle	85
Safety Valves GSV	86
Strainers GSF, SZ	87 – 88
Stop Valves GAV	89 – 90
Ball Valve GBV	91

Features of the CW Series

- Direct acting proportional controller for regulating the cooling-water return temperature.
- Reduced capital costs (for new plants) coolant and energy consumption due to higher discharge temperatues
- The valve prevents short-circuiting and automatically balances large systems.
- Straight-through body with solid-state expansion thermostat and setting device.
- Standard valve type CW 41 with pressure gauge (0-6 bar) and thermometer (-30 to +100 °C).
- MCW 41 = CW 41 with diaphragm actuator. (Retro-fitting of diaphragm actuator possible).

Application

CW 41 CW 44	for industrial cooling water
CW 41/4 CW 44 k	for saline fluids, ammoniacal cooling water and chlorinated hydrocarbons (wetted internal parts made from stainless steel)
MCW 41	for heavily contaminated cooling systems

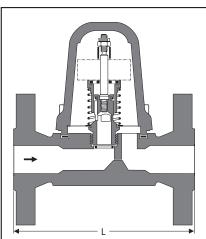
Specification*)

		ΔΡ	Material		Pres	sure/Tempera	nture
Туре	PN				PS	TS ²)	p / T²)
		[bar]	EN	ASTM	[bar]	[°C]	[bar / °C]
CW 41	16	6	5.3103	A 3951)	16	- 10 / 110	16 / 110
CW 41/4	16	6	5.3103	A 395 ¹)	16	- 10 / 110	16 / 110
CW 44	25	16	1.0460	A 105 ¹)	25	-2/120	25 / 110
CW 44 K	25	16	1.0460	A 105 ¹)	25	- 10 / 85	25 / 85

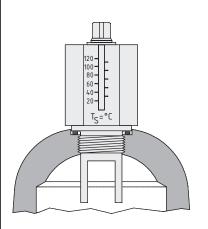
- ASTM nearest equivalent grade is stated for guidance only. Physical and chemical properties comply with EN.
- ²) Temperature that is admissible for only a short time depends on type of thermostat: n-thermostat 110 °C, w-thermostat 100 °C, k-thermostat 85 °C
- *) For more information on pressure/temperature ratings and end connections see data sheets.

Temperature Ratings

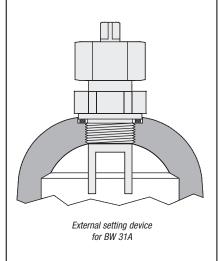
Туре	Thermostat/cone combination	Adjustment range
CW 41	wr or ws	20 °C – 60 °C
CW 41/4	nr or ns	3°C – 100°C
	kr or ks	−32 °C − 74 °C
CW 44	n	−2 °C − 106 °C
CW 44 K	k	−37 °C − 71 °C
	w = wax thermostat r = reduced cone for small flowrates k = thermostat for brine s = standard cone for large flowrates	


End Connections and Overall Lengths

		Overall length L [mm]							
Туре	End connection	DN 10	DN 15	DN 20	DN 25	DN 40	DN 50	DN 80	DN 100
		3/8"	1/2"	3/4"	1"	11/2"	2"	3"	4"
CW 41	Flanged EN PN 16	-	-	-	160	200	230	310	350
CW 41/4	Flanged EN PN 16	_	-	-	160	200	230	310	350
CW 44	Screwed sockets	95	95	95	95	-	-	-	-
CW 44 K	Screwed sockets	95	95	95	95	_	-	-	-


Flowrates (k_v values)

Туре	Cone		DN 25	DN 40, DN 50	DN 80, DN 100	
CW 41	r	K _{VS} value [m³/h]	2.1	6.5	20	
CW 41/4	'	K _{VO} (Preset bleed flow) [m ³ /h]	0.12	0.31	1.0	
	S	K _{VS} value [m³/h]	10.5	31	98	3
		K _{VO} (Preset bleed flow) [m ³ /h]	0.55	1.5	5.0	
			•			
			G 3/8	G 1/2	G 3/4	G 1
CW 44	-	K _{VS} value [m³/h]	0.66	0.66	1.37	1.37
CW 44 K	-	K _{VO} (Preset bleed flow) [m ³ /h]]	0.04	0.04	0.04	0.04



BW 31, DN 15-25 mm

External setting device for BW 31

Features of the BW series

- Direct acting proportional controller for maintaining constant return temperatures.
- Used for regulating large heating systems and tracing systems, or for the temperature control of individual heat exchangers (washing baths, chemical and galvanic baths).
- Also suitable for a supply system tailored to the needs of consumers that are installed in parallel.
- Straight-through valve with balanced valve sleeve. Closing temperature set at our works.
- Valves with external setting device available on request.

Application

BW 31	for hot water
BW 31 A	for thermal oils

Specification*)

			PN ΔP [bar]	Mat	erial	Pressure / Temperature			
Туре	DN	PN		EN	ASTM	PS [bar]	TS [°C]	p / T [bar / °C]	
BW 31	15-25	40	6	1.0460	A 105 ¹)	40	400	23.1 / 400	
BW 31	40	25	6	1.0460	A 105 ¹)	25	400	14.4 / 400	
BW 31A	15-25	40	6	1.0460	A 105 ¹)	40	400	23.1 / 400	
BW 31A	40	25	6	1.0460	A 105 ¹)	25	400	14.4 / 400	

¹⁾ ASTM nearest equivalent is stated for guidance only. Physical and chemical properties comply with EN.

End Connections and Overall Lengths L

		Overall length L [mm]					
Туре	Connections	DN 15	DN 20	DN 25	DN 40		
турс		1/2"	3/4"	1"	11/2"		
BW 31	Flanged EN PN 25	150	150	160	200		
	Flanged ASME 150	150	150	160	215		
	Screwed sockets	95	95	95	130		
BW 31A	Flanged EN PN 25	150	150	160	200		
	Flanged ASME 150	150	150	160	216		
	Screwed sockets	95	95	95	130		

Closing temperatures (without external setting device)¹)

	Adjustable range	DN 15 mm	DN 20 mm	DN 25 mm	DN 40 mm	
Туре		1/2"	3/4"	1"	11/2"	
BW 31		20°C - 130°C	20°C - 115°C	20°C - 115°C	20°C - 110°C	
BW 31A		120 °C - 270 °C	100 °C - 280 °C	100 °C - 280 °C	100 °C - 270 °C	

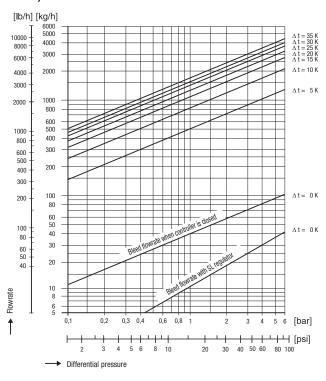
¹⁾ We can supply a system set to a fixed closing temperature within the permitted range, in 5°C increments for the BW31 and 10°C increments for the BW31A.

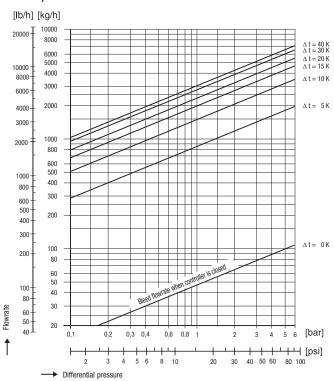
Adjustable closing temperatures (with standard external setting device)

BW 31	60 °C – 130 °C	40 °C – 115 °C	40 °C – 115 °C	50 °C – 110 °C
BW 31A	90°C – 270°C	70 °C – 270 °C	70 °C – 270 °C	70 °C – 270 °C

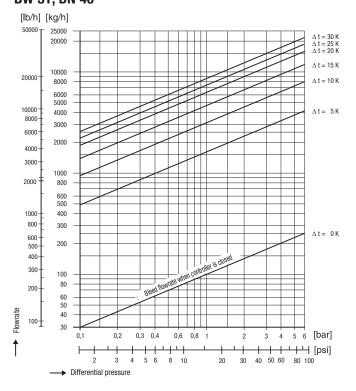
Adjustable closing temperatures (with special external setting device)

BW 31	20°C – 110°C	20°C – 90°C	20 °C – 90 °C	20 °C – 75 °C
BW 31A	60°C – 160°C	30 °C – 170 °C	30 °C – 170 °C	$25^{\circ}\text{C} - 85^{\circ}\text{C}$


^{*)} For more information on pressure/temperature ratings and end connections see data sheet.

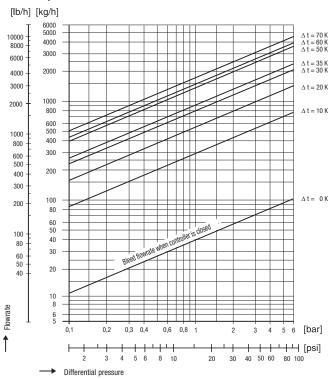

Capacity Charts

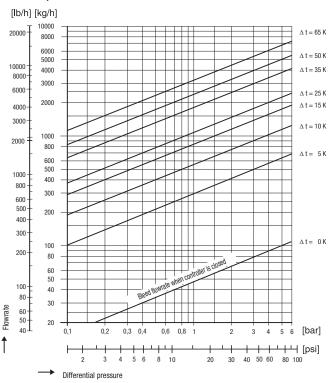
 $\Delta t =$ temperature difference in Kelvin [K] between closing temperature (temperature at which the valve is closed) and return temperature.


BW 31, DN 15

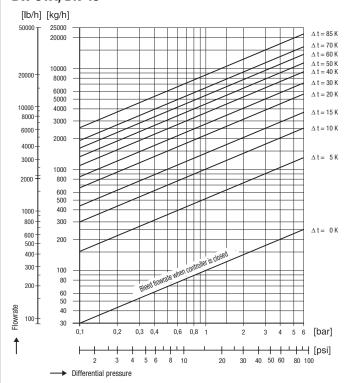
BW 31, DN 20 and 25

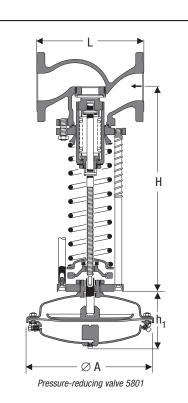
BW 31, DN 40

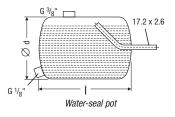


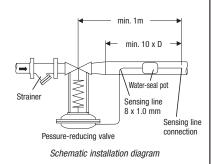

Capacity Charts

 $\Delta t =$ temperature difference in Kelvin [K] between closing temperature (temperature at which the valve is closed) and return temperature.


BW 31A, DN 15


BW 31A, DN 20 and 25




BW 31A, DN 40

Application

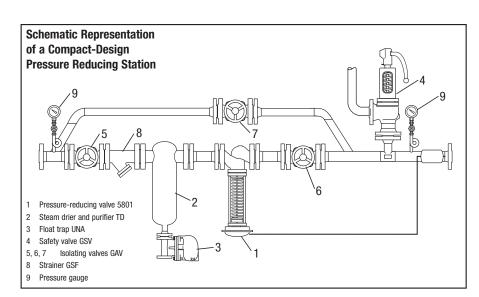
Type 5801 Pressure-reducing valve for use with steam and other fluids. In all energy and process systems.

Design

The pressure-reducing valve is a balanced single-seat proportional controller operating without auxiliary energy.

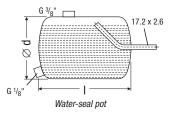
The pressure-reducing valve consists of a body with internals, bellows, spring, handwheel and actuator. For steam and liquids at temperatures above $100\,^{\circ}\text{C}$ a water-seal pot is required to protect the actuator diaphragm.

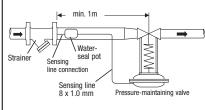
Dimensions [mm] and Weights [kg] of Valve Body


DN	15	20	25	32	40	50	65	80	100	125	150	200
L	130	150	160	180	200	230	290	310	350	400	480	600
Н	390	390	390	408	425	500	505	590	590	705	725	760
Weight 1.0619 Weight 1.4581	7	8	9	12	14	19	27	40	54	82	115	176

Dimensions [mm] and Weights [kg] of Actuator

Actuator	A11	A2	A3	A4	A51	A61	B11	B2
Ø A	150	160	195	270	355	510	150	160
h ₁	90	100	100	120	165	200	90	110
Approx. weight	2.8	4.5	6.0	4.5	10	27.5	3.5	5.5


Dimensions [mm] and Weights [kg] of Water Pot Seal


Size	I	d	Size DN	Weight
1	206	88.9	15 – 65	1.7
2	172	152.4	80 – 100	3.5
3	250	152.4	125 – 200	4.9

Pressure-maintaining valve 5610

Schematic installation diagram

Application

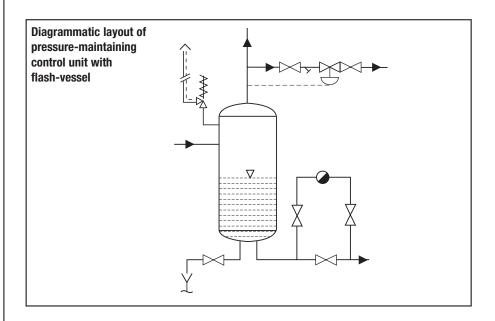
Type 5610 Pressure-maintaining valve for maintaining upstream pressures independent of downstream pressures for use with steam, gases and liquids.

Design

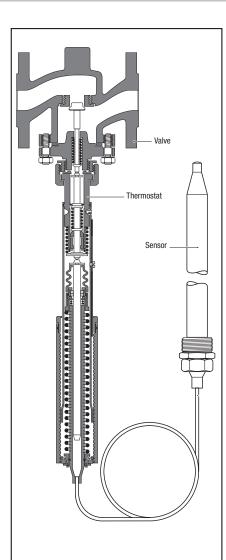
The pressure-maintaining valve is a self-acting proportional controller with single-seat and balanced valve.

The pressure-maintaining valve consists of a body with internals, bellows, spring, handwheel and actuator. For steam and liquids at temperatures above $100\,^{\circ}\text{C}$ a water-seal pot is required to protect the actuator diaphragm.

Dimensions [mm] and Weights [kg] of Valve Body


DN	15	20	25	32	40	50	65	80	100
L	130	150	160	180	200	230	290	310	350
Н	405	405	405	410	425	495	500	590	590
Approx. weight	10	11	12	14	18	23	35	48	70

Dimensions [mm] and Weights [kg] of Actuator


Actuator	A11	A2	A3	A4	A51	B11	B2
Ø A	150	160	195	270	355	150	160
h ₁	90	100	100	120	165	90	110
Approx. weight	2.8	4.5	6.0	4.5	10	3.5	5.5

Dimensions [mm] and Weights [kg] of Water-Seal Pot

Size	I	d	Size DN	Weight
1	206	88.9	15 – 65	1.7
2	172	152.4	80 – 100	4.9

Application

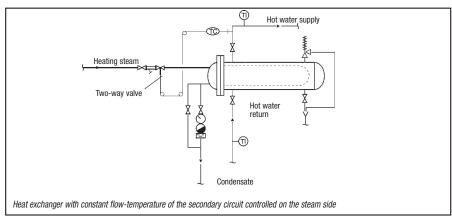
Temperature control in heating and cooling processes in industrial plants, for h.v.a.c services and marine engineering. For liquids, gases, vapours.

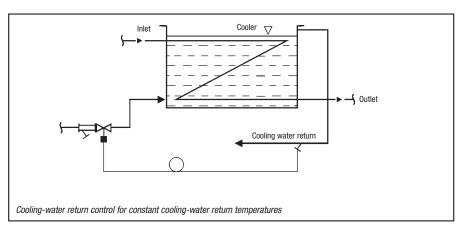
Design

The self-acting temperature controller consists of a valve featuring a thermostat and a sensor. According to the service conditions the controller is optionally equipped with a cooling unit or a sensor pocket.

The temperature sensed by the sensor changes the volume of the measuring liquid in the capillary tube. The resulting pressure acts directly on the actuating piston which, in turn, operates the valve spindle. As the temperature rises, the regulating valve is held in closed position (heating process) or open position (cooling process) until the pre-set release temperature is reached.

When the temperature drops again, a builtin return spring resets the valve to original position. Two-way valves, with single seat or pressure-balanced single/double seat. Double-seated, two-way reverse-acting valves or three-way valves for diverting and mixing applications. Valve components made of gunmetal, cast iron, nodular cast iron or cast steel, with flanged or screwed connections.


Thermostat


The thermostat is firmly attached to the sensor capillary tube. The rod-, spiral- or airduct-type sensors are made of copper or high-alloy stainless steel.

The capillary tube is available in different lengths, made of copper or high-alloy stainless steel.

Valves

Examples of Industrial Process Applications

Value dum	sions [mm] and	Troignto [r								40			0.5	00	100	105	450
Valve typ)e		DN	1	15 , l	20	1	25	32	40	ı	50	65 I	80 I	100	125	150 I
			G		/2	3/4	_	1	11/4	1½		2					
M1F			L		30	150		60	180	200		230					
G1F H1F			H ₁		80	85		95	105	110		125					
піг			H ₂		50	65		70	75	85		95					
	G1	M1F/G1F		3	_	4.2		5.5	8.1	9.7	_	14.7					
	-	H1F	kg		.4	4.6	_	3.1	9.0	10.8		15.5					
M1FBN			L		30	150		60	180	200		230	290	310			
G1FBN			Н		01	107		12	122	125		140	154	164			
H1FBN			H ₁		0	85		70	75	85		95	110	115			
		M 1 FBN	kg		4	5	_	5.0	9.0	13.0		16.0	23.0	38.0			
	l⊷l G1	G1FBN	kg		4	5	_	3.0	9.0	13.0	_	16.0	23.0	38.0			
		H1FBN	kg	- 4	4	5	(3.0	9.0	13.0		16.0	23.0	38.0			
L1S	L		L		35	95											
_	† 虽 月		Н	(65	67											
Ξ	##		H_1		20	32											
	G1	-	kg	0	.7	8.0											
L2S			L							129		153					
			Н							118		122					
			H ₁							68		71					İ
	G1		kg							2.9		3.8					
L2SR	L L		L							129		153					
			Н							65		70					
			H ₁							90		94					
	G1		kg							3.0		4.0					
M2FR	G1 ∸-		L			150	1	60	180	200		230	290	310	350	400	400
G2FR	╟╱┸┧┋ <u>╴</u>		H ₁			63		70	75	85		95	110	155	145	160	180
H2FR			H ₂			112	1	17	151	155		163	180	195	240	260	293
	 		kg			5.0	1	6.5	9.0	11.0		16.0	21.0	35.0	39.0	75.0	77.0
																	1
Thermosta	ats			Type \	/ 2 05		Type \	V 4.03	Tyr	ne V 4.0	5	Type	V 4.10	Type	V 8.09	Tyne	V 8.18
K = sensor					I			l		ı			1		I	,	I
	r of high alloy S.S.			K	N		K	N	K		N	K	N	K	N	K	N
Adjusting	cylinder	P	4	305	30	5 3	85	385	385	3	85	385	385	560	560		560
	[E	3	405	40	5 5	25	525	525	5	25	525	525	740	740		740
	H A A A A A A A A A A A A A A A A A A A																
Rod- and	spiral-type	(0	210	19	0 2	210	190	390	3	80	490	515	710	745		800
sensor wi	th BSP connection			235	17	0 2	235	170	235	2	50	325	325	425	435		810
→ 30 上	<u>→ E </u> ← →		Ε	22	2		22	22	22		22	28	25	28	25		34
🖪	↑ A T	3	=	49	4		49	49	49		49	49	49	49	49		49
1 111			G	3/4	3/2		1	1	1		1	1	1	2	2		2
	0 11 -																4
)		- -	2"	2'		2"	2"	2"		2"	2"	2"	2"	2"		2"
		AAAAAA					2" 2.4	2" 2.4	2"		2" !.6	2" 3.3	2" 3.3	2" 6.3	2" 6.3		2" 7.3

Closing Pressure Ratings for Valves and Sensors

Single-seated regulating valves with flanged ends and rod-type copper sensor with copper capillary tube (3 m)

	DN [mm]	15/6	15/9	15/12	15	20	25	32	40	50	65	80
	k _{vs} value	0.45	0.95	1.7	2.75	5	7.5	12.5	20	30	50	80
Δp_{max} for sensor type	2.05	20	13	9.3	5.3	1.9	0.9	-	-	-		
Fluid: saturated steam	4.05	40	38	24	15	6.7	_	-	-	_		
Type M1F, G1F, H1F	4.10	-	-	-	-	-	4.1	1.9	0.8	-		
	8.09	-	-	-	-	16	10	5.8	3.3	2.3		

Balanced, single-seated regulating valves with flanged ends and rod-type copper sensor with copper capillary tube (3 m)

	DN		15	20	25	32	40	50	65	80
	k _{vs} value		4	6.3	10	16	25	35	58	80
Δp_{max} for sensor type	4.05		16	16	16	16	9	8	6	4
Fluid: saturated steam	4.10		16	16	16	16	9	8	6	4
Type M1FBN, G1FBN, H1FBN	8.09		16	16	16	16	16	16	16	16
	8.18		16	16	16	16	16	16	16	16

Single-seated regulating valves with screwed end connection and rod-type copper sensor capillary tube (3 m)

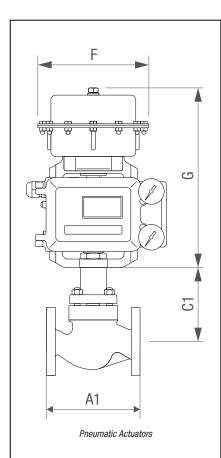
	BSP	1/2/6	1/2 / 9	1/2 / 12	1/2	3/4			
	k _{vs} value	0.45	0.95	1.7	2.75	5			
Δp_{max} for sensor type	2.05	16	16	-	6	2.9			
Fluid: saturated steam	4.05	16	16	_	16	9			
Type L 1S	4.10	16	16	-	16	9			

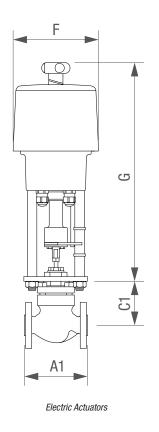
Double-seated regulating valves with screwed connection and rod-type copper sensor with copper capillary tube (3 m)

		BSP	1/2/6	1/2/9	1/2 / 12	1/2	3/4	1	11/4	11/2	2	
		k _{vs} value	0.45	0.95	1.7	2.75	5	7.5	12.5	20	30	
Δp_{max} for sensor type		2.05	-	-	-	-	-	-	-	-	-	
Fluid: water < 120 °C	Type L 2S	4.10	-	_	_	-	_	_	_	21	14	

Double-seated reverse-acting valve with screwed connection and rod-type copper sensor with copper capillary tube (3 m)

	BSP	1/2	3/4	1	11/4	11/2	2
	k _{vs} value	2.75	5	7.5	12.5	20	30
Δp_{max} for sensor type	2.05	-	-	-	-	-	-
Fluid: water < 120 °C	4.05	-	_	-	-	_	_
Type L2SR	4.10	-	-	-	-	2.7	1.8


Double-seated reverse-acting valve with flanged ends and rod-type copper sensor with copper capillary tube (3 m)


	DN [mm]	20	25	32	40	50	65	80	100	125	150
	k _{vs} value	5	7.5	12.5	20	30	50	80	125	215	310
Δp_{max} for sensor type	2.05	8.3	8	-	-	-	-	-	-	-	-
Fluid: water < 120 °C	4.05	8.3	8	7	_	_	_	_	_	_	_
Tye M2FR, G2FR, H2FR	4.10	-		-	6.6	5.3	5.8	6.7	-	-	_
	8.09	-	_	_	_	_	_	_	12.1	_	_
	8.10	-	-	-	-	-	-	-	12.1	9	7.5

Three-way valves available on request.

GCV Types at a glance

Rangeability	Seri	es K	Series L			
	EN	ASME	EN	ASME		
Equal percentage	KE	KEA	LE	LEA		
Linear	KL	KLA	LL	LLA		
Fast opening (on/off applications)	KF	KFA	LF	LFA		

DN -		Max. differential pressure ∆p [bar]										
		20	25	32	40	50	65	80	100			
with pneumatic actuator PN9123E	40	40	39.1	30.7	11.5	7.5	-	_	_			
with pneumatic actuator PN9223E	40	40	40	40	40	37.7	_	_	-			
with pneumatic actuator PN9233E	-	-	-	-	-	-	20.2	12.4	7.3			
with pneumatic actuator PN9337E	_	_	_	_	_	_	40	34.9	21.3			
with electric actuator AEL51211JXA	40	35	23	18	7.9	5.6	-	-	-			
with electric actuator AEL53211JXA	_	_	40	40	38.8	27.6	15.3	9.8	6.1			
with electric actuator AEL54211JXA	-	-	-	40	40	40	27.7	17.7	11			
with electric actuator AEL55311JXA	_	_	_	_	_	40	40	31.3	19.5			
K _{VS} [m ³ /h] min	0.1	1	1	4	4	4	16	16	36			
K _{VS} [m ³ /h] max	4.9	7.2	11	17.5	31	46	90	115	160			

Dimensions of valve

DN			20	25	32	40	50	65	80	100
Travel [mm]			20	20	20	20	20	30	30	30
	A1 [mm]	130	150	160	180	200	230	290	310	350
KE series	C1 [mm]	103	103	103	132	132	127	201	201	216
	Weight [kg]	6	6.8	7	13.5	14	17	35	40	54
	A1 [mm]	190	190	197	-	235	267	292	317	368
KEA series	C1 [mm]	102	102	102	127	127	127	200	200	216
	Weight [kg]	7.3	8.2	9.1	14.1	16.3	17.2	35.4	39	56.2
	A1 [mm]	184	184	184	222	222	254	276	298	352
LEA series	C1 [mm]	102	102	102	127	127	127	200	200	216
	Weight [kg]	7.3	8.2	13.6	13.2	14.1	17.2	35	40	56

Dimensions of actuator

		Pneumati	c actuator		Electric actuator					
	PN9123E	PN9223E	PN9233E	PN9337E	AEL51211JXA	AEL53211JXA	AEL54211JXA	AEL55311JXA		
F [mm]	170	300	300	390	177	177	177	180		
G [mm]	275	300	300	335	459	459	490	557		
Weight [kg]	6	17	17	27	5	5	7	10		

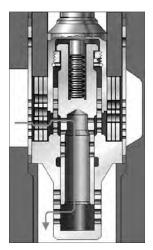
Optional extras

Pneumatic actuators

Elect.-pneumatic positioner SP7 Filter/regulator MCP2M (0.7 - 9.0 bar) Limit switch, mechanical

Limit switch, inductive Solenoid valve 230 V AC Solenoid valve 115 V AC Solenoid valve 24 V AC Solenoid valve 24 V DC

Electric actuator


Potentiometer 1 k Ω Limit switch AEL5951

Positioner (4-20 mA) only with potentiometer 1k Ohm Position feedback AEL5981

ZK 29/14 DN 50 with lift restriction (optional extra)

Radial stage nozzle with tandem shut-off for ZK 213

Application

For the decrease of high pressure drops in industrial plants and power stations as:

- Level control valve
- Warm-up valve
- Level control valve
- Injection cooling valve
- Feedwater control valve
- Leak-off valve
- Start-up pot drain valve
- And more applications

Features

- Extremely wear resistant
- Excellent sealing and control characteristic (EN 12266-1 leakage rate A)
- Variable valve characteristics (linear and equal-percentage)
- Easy assembly and inspection of nozzle insert
- Tandem shut-off for ZK 313 and ZK 213
- Low sound level
- Different actuators available

Materials

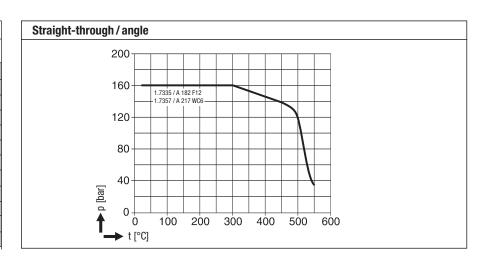
Туре		Body 1)
ZK 29, DN 25, 50	13 CrMo 4 4	(1.7335) / A182 F12
ZK 29, DN 80, 100, 150	GS-17 CrMo 5 5	(1.7357) / A 217 WC6
ZK 210	13 CrMo 4 4	(1.7335) / A 182 F12
ZK 313	16 Mo 3	(1.5415)
	C 22.8	(1.0460) / A 105
	10 CrMo 9 10	(1.7383) / A182 F22
	X 10 CrMo VNb 9 1	(1.4903) / A182 F91
ZK 213	16 Mo 3	(1.5415)
	WB 36	(1.6368)
ZK 610 / 613	16 Mo 3	(1.5415)
	10 CrMO 9 10	(1.7383)

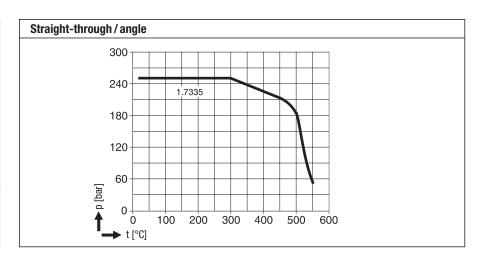
¹⁾ Butt-weld ends of other material by welding of pipe ends possible.

Actuators

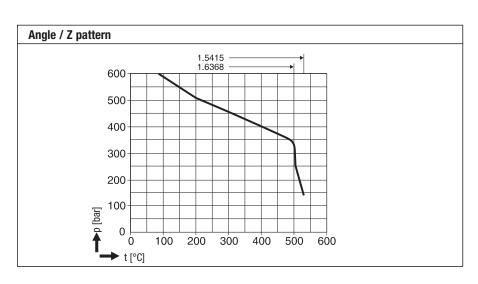
Туре	ZK 29	ZK 210	ZK 313	ZK 213	ZK 610 ZK 613
Handwheel	•	•	•	-	-
Electric rotary actuator	•	•	•	•	•
Electric linear actuator	•	•	•	•	•
Electro-hydraulic linear actuator	_	-	•	•	•
Pneumatic actuator	•	•	•	•	•
Part-turn actuator	•	_	•	•	•

Controls


Complete PLC-based controls for applications such as injection cooler, leak-off valve etc. designed and manufactured according to customers' specifications.

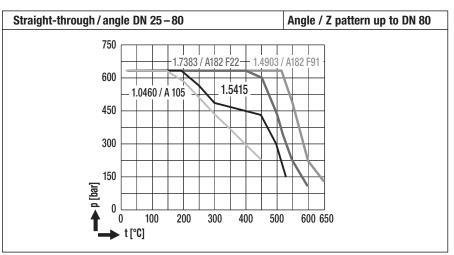

Technical Data

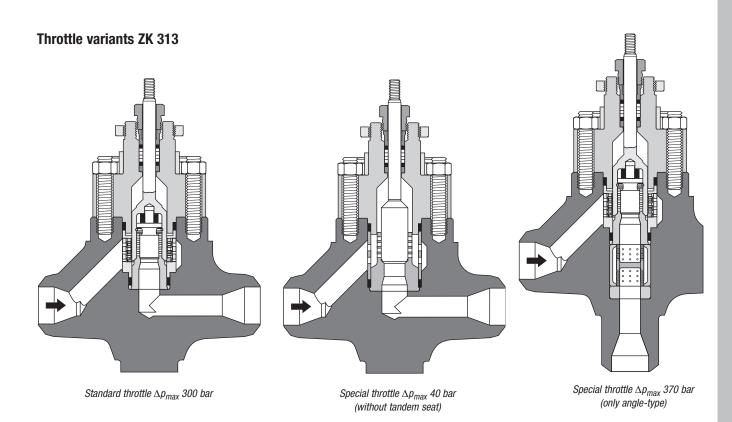
 Kv_S -values [m³/h] (linear characteristics), design, pressure/temperature ratings


ZK 2	ZK 29										
DN	Δ	∆p 100	bar								
25	0.7	1.4	2.1								
50	3	6	9								
65											
80	14	21	28								
100	20	33	46								
125											
150	70	100	130								
200											
250											
300											
350											
400											

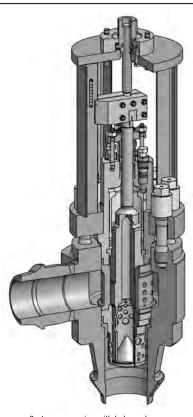
ZK 2	10			
DN	Δ	∆p 100	bar	∆p 180 bar
25	0.8	1.5	2.3	0.5
50	3.3	6.5	10	2
65				
80	9.5	18	28	5
100				
125				
150				
200				
250				
300				
350				
400				

ZK	ZK 213 sizes 1-5										
DN /		∆p 3	300	bar		∆p 560 bar					
Bg.	1	2	3	4	5	1	2	3	4	5	
25											
50											
65											
80	13					10					
100	13	26				10	20				
125	13	26	39			10	20	30			
150		26	39	60			20	30	46		
200			39	60	90			30	46	70	
250				60	90				46	70	
300					90					70	
350											
400											


Adaptation of nominal sizes is possible



Technical Data


 Kv_S -values [m³/h] (linear characteristics), design, pressure/temperature ratings

ZK 3	ZK 313									
DN	∆ p 3	∆ p 300 bar								
25	1	1.5	2.3	3.6	5.5	8	11	13	4.5	9.5
50	1	1.5	2.3	3.6	5.5	8	11	13	4.5	9.5
65	1	1.5	2.3	3.6	5.5	8	11	13	4.5	9.5
80	1	1.5	2.3	3.6	5.5	11	14.5	17	4.5	9.5
100						11	14.5	17	4.5	9.5
125						11	14.5	17	4.5	9.5
150						11	14.5	17	4.5	9.5
200										
250										
300							*********			
350										•
400										

3-stage expansion with balanced pressure for ZK 613

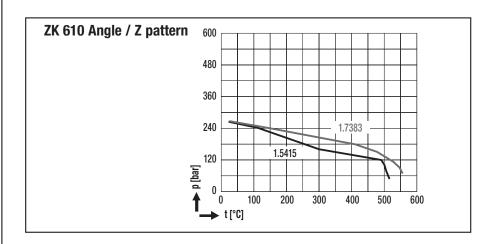
Application

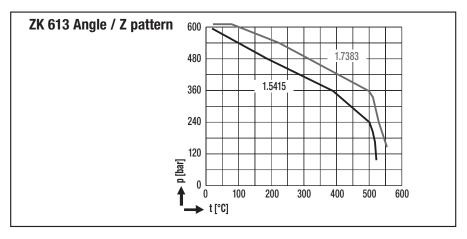
For large flowrates; used as

- Feedwater control valve
- Heating steam valve
- Start-up vessel drain valve

Features

■ Excellent sealing and control characteristics

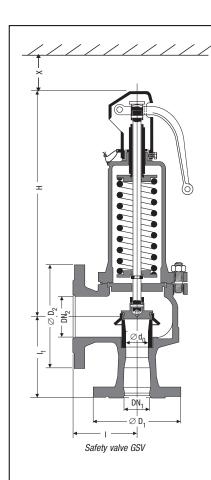

- Extremely wear resistant
- Valve designed on modular assembly principle
- Low sound level
- Easy assembly and inspection of nozzle insert
- Variable valve characteristics (linear and equal-percentage)
- Kv_s range from 28 to 969 m³/h
- Leakage-free pressure-balanced design


Technical Data

Max. Kv_s values [m³/h], (linear characteristic), connections, limiting conditions

ZK 610/ZK 613 Angle / Z pattern

$\Delta \mathbf{p}$ (bar)	40/50	80/100	120/150
DN	1-stage	2-stage	3-stage
100	44 – 98	38 – 54	33 – 47
125	71 – 154	61 – 85	51 – 74
150	112 – 243	95 – 134	81 – 117
200	177 – 385	150 – 212	128 – 185
250	281 – 611	238 – 336	216 – 294
300	446 – 969	378 – 533	322 – 465



E-mail: info@ de.gestra.com

Application								On / Off	
Fluid								Regulation	n
Design pressure [b	oarg]			Design temperat	ure	[°C]		PN/CL	
Operating data		Load		1		2		3	
Loading Flowrate		m [t/h]	-						
		V [m³/h]	-						
Upstream pressure	Э	p1 [bara]	-						
Downstream press	sure	p2 [bara]	-						
Temperature		t1 [°C]	-						
K _{vs} -value from exi	sting	y valve[m ³	/h] n	nanufacturer / type					
Pipeline size	To v	alve inlet						_ Material	
	To v	alve outlet						Material	
Valve Data		DIN		ANSI				Characteristic 🔲 linear 🖵 eq	ual-percentage
Body		Straight through		Angle		Z-form		Material	
InletDN		FL		BWx		sw		Material	
OutletDN		FL		BWx		sw		Material	
Material inspection		EN 10204-3.1		EN 10204-3.2		Other			
Final inspection		EN 10204-3.1		EN 10204-3.2		Other			
Actuator data		Handwheel		Handwheel convertible to elec	ctric	rotary actuator			
		Electric rotary actuat	or ma	anufacturer / type					
	Con	nection		B1-F10 (F14) EN ISO 5210		Other			
		Three phase current		Other: Voltage / Requency		V/	_Hz: _	Time [sek.]	
		Standard: 2 torque-, 2	positi	on switches, 4-20 mA feedbac	k sig	ınal		Positioner input signal 4-20 m	nA
Other									
		Pneumatic actuator		Fail safe		Spring to close		Spring to open	
		Air supply[ba	rg]	Handwheel		Positioner 4-20 mA		☐ Other	
		3/2-way solenoid valve	volta	age / frequencyV / _		Hz			
Accessories									
Your details:									
Company								Electric linear actuator manu	facturer / type
Name / job title								Other	
Telephone									
Fax									
E-mail									
Date									

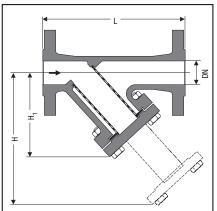
Application

For use with steam, liquids, and non-corrosive gases and vapours.

Dimensions [mm] and Weights [kg]

DN ₁ x DN ₂	20 x 32/40	25 x 40	32 x 50	40 x 65	50 x 80	65 x 100	80 x 125	100 x 150	125 x 200	150x250
d_0	18	23	29	37	46	60	74	92	98	125
I	95	100	110	115	120	140	160	180	200	225
I ₁	85	105	115	140	150	170	195	220	250	285
H 1)	215	233	325	366	413	526	603	660	660	735
H ²)	-	234	331	372	419	529	606	663	663	735
Χ	150	150	200	250	300	350	400	450	450	450
Weight	9	9	12	16	22	32	56	75	85	131

^{1) 4421, 4425, 4422 &}lt;sup>2</sup>) 4414


Discharge Capacities for Saturated Steam [kg/h]

Dioonal go v	Diodiai go ou paoi tioo ioi ou tai atou otoaiii [kg/ii]													
Set pressure [bar]	DN 20	DN 25	DN 32	DN 40	DN 50	DN 65	DN 80	DN 100	DN 125	DN 150				
0.2	86	140	223	363	561	954	1451	2243	2545	4140				
0.5	137	224	356	579	895	1523	2316	3581	4062	6609				
1.0	199	326	518	843	1302	2215	3370	5209	5910	9616				
2.0	318	519	825	1343	2075	3531	5371	8302	9420	15326				
3.0	428	699	1111	1808	2794	4754	7232	11178	12683	20635				
4.0	534	871	1385	2254	3485	5928	9018	13938	15816	25731				
5.0	639	1043	1658	2699	4172	7097	10796	16687	18934	30804				
6.0	744	1214	1930	3142	4856	8262	12568	19426	22042	35861				
7.0	846	1381	2196	2574	5525	9399	14297	22098	25074	40794				
8.0	950	1551	2466	4014	6205	10556	16057	24818	26161	45816				
9.0	1054	1721	2736	4454	6884	11712	17815	27535	31244	50831				
10.0	1158	1891	3006	4893	7562	12866	19571	30250	34324	55842				
12.0	1366	2230	3545	5770	8919	15174	23081	35675	40480	65858				
14.0	1569	2562	4073	6629	10247	17433	26518	40987	46507	75664				
16.0	1776	2900	4610	7505	11600	19735	30020	46400	52650	85657				
18.0	1984	3239	5149	8382	12955	22041	33526	51820	58800	95663				
20.0	2191	3578	5688	9260	14312	24350	37039	57249	64960	105685				
22.0	2393	3907	6212	10111	15629	26590	40446	62515	70935	115407				
24.0	2601	4247	6752	10991	16988	29303	43964	67953	77106	125445				
26.0	2810	4588	7294	11873	18351	31222	47491	73405	83292	_				
28.0	3019	4930	7837	12757	19718	33547	51029	78873	89496					
30.0	3229	5272	8382	13644	21089	35880	54577	84358	-	-				
32.0	3440	5616	8929	14534	22465	38220	58137	89860	-	_				

Calculation according to DIN 3320 and AD Bulletin A2, TRD 421.

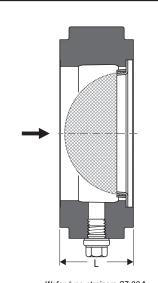
For discharge capacities for other set pressure ratings or fluids see data sheet.

Strainer series with flanged connections GSF 11, PN 6, 5.1301 GSF 14, PN 16, 5.1301 GSF 35/36, PN 25/40, GP 240 GH GSF 46A, PN 16/40, 1.4408 GSF 24, PN 16, 5.3103 GSF 25, PN 25, 5.3103

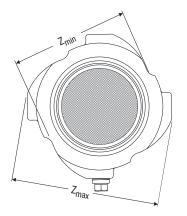
Application

In piping systems upstream of equipment that is sensitive to dirt. For liquids, gases, steam and aggressive fluids.

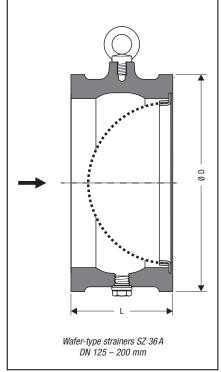
Dimensions [mm] and Weights [kg] for Y-Type Strainers with Flanged Connections PN 6 - 40


Nominal size			15	20	25	32	40	50	65	80	100	125	150	200	250	300
Overall length		L	130	150	160	180	200	230	290	310	350	400	480	600	730	850
Overall height	GSF 11, 14	Н	135	160	180	215	240	250	285	330	395	455	525	650	870	1110
Overall height	GSF 11, 14	H1	90	100	115	135	150	160	180	215	240	280	330	405	540	680
Overall height	GSF 24, 25	Н	115	115	135	135	170	190	220	265	340	410	475	580	680	820
Overall height	GSF 24, 25	H1	75	75	90	90	110	120	140	165	220	260	300	360	470	560
Overall height	GSF 35	Н												587	718	829
Overall height	GSF 35	H1												380	445	511
Overall height	GSF 36	Н	121	121	145	146	200	201	287	292	335	415	485			
Overall height	GSF 36	H1	88	87	100	101	134	135	191	195	224	268	309			
Overall height	GSF 46A	Н	155	165	180	195	210	225	250	290	340	430	480	590	750	940
Overall height	GSF 46A	H1	100	110	120	125	150	165	185	190	200	280	310	390	455	665
Mesh size	GSF 11, 14	mm	1	1	1	1	1	1	1.25	1.25	1.6	1.6	1.6	1.6	1.6	1.6
Mesh size	GSF 24, 25	mm	1.25	1.25	1.25	1.25	1.25	1.25	2	2	2	2	2	2	2	2
Mesh size	GSF 35	mm												2	2	2
Mesh size	GSF 36	mm	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	2	2	2	2	2
Mesh size	GSF 46A	mm	0.5	0.5	0.5	0.5	0.8	0.8	0.8	0.8	0.8	1.0	1.0	1.0	2.1	2.1
Plug	GSF 11, 14	G	3/8	3/8	3/8	3/8	3/8	3/8	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Plug	GSF 24, 25	G	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1	1	1	1	1	1
Plug	GSF 35	G												2	2	2
Plug	GSF 36	G	3/8	3/8	3/8	3/8	11/4	11/4	11/4	11/4	1½	1½	1½			
Plug	GSF 46A	M	10	10	10	10	12	12	14	14	14	16	16/20 ¹)	18	20	22
Weight	GSF 11	kg	2.5	3	4.5	5.5	7	9	13	19	26	38	54	110		
Weight	GSF 14	kg	3	4	5	7	9	12	16	21	30	43	61	121	154	255
Weight	GSF 24	kg	3.5	4	5.5	7	9	12	16	21	28	41	58	121	154	255
Weight	GSF 25	kg	3.5	4	5.5	7	9	12	16	21	32	47	64	133		
Weight	GSF 35	kg												120.6	184.9	269
Weight	GSF 36	kg	3	3.5	4.4	5.8	8.4	11.2	19.4	21.6	32.4	48.2	70			
Weight PN40	GSF 46A	kg	5	6	7.5	9	10.5	14	24	28	43	71	99	148	266	499
Weight PN16	GSF 46A	kg							20	24	29	53	75	125	239	408

¹⁾ PN 40: M20


Application

In piping systems upstream of equipment that is sensitive to dirt. For liquids, gases, steam and aggressive fluids.



Wafer-type strainers SZ 36A DN 40 – 100 mm

Wafer-type strainers SZ 36A DN 40 – 100 mm

Features

- Cylindrical body with drain plug
- Robust, hemispherical screen
- Body and strainer made from corrosion-resistant stainless steel
- Minimum pressure loss

Application

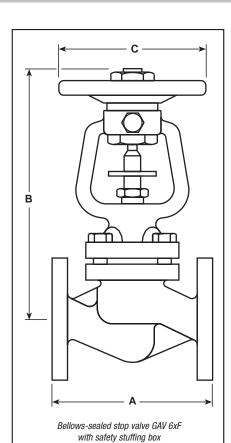
In piping systems upstream of equipment that is sensitive to dirt. For liquids, gases, steam and aggressive fluids.

Dimensions and Weights for Wafer-Type Strainers

Types SZ 36A

Nominal size	[mm]	40	50	65	80	100	125	150	200
Nomina Size	[Inch]	11/2	2	21/2	3	4	5	6	8
Overall length	L	31,5	40	46	50	60	90	106	140
ŭ	$ ot\!\! ot$ $ ot\!\! $	83	96	110	128	151	_	_	_
[mm]	Ø Z _{max}	104	118	136	158	186	-	-	_
	Class 125/150	-	-	-	-	-	194	220	275
	PN 10/16	-	-	-	-	-	194	220	275
\varnothing D	PN 25	_	_	_	_	_	194	226	286
	PN 40	-	-	-	-	-	194	226	293
	Class 300	-	-	-	-	-	216	251	308
Weight	[kg]	1	1.6	2.1	2.9	4.7	10	14	26

Pressure/Temperature Ratings *)


		Mate	erial	Pressure / temperature						
Туре	PN/Class	EN	ASTM	p / T [bar] / [°C]						
SZ 36 A	PN 40 / Class 300	1.4408	A351 CF8M	49.6 / -200	35.7 / 200	24.9 / 550				

^{*)} For more detailled pressure/temperature specifications as a function of the end connection refer to the data sheet.

Design

DN	40 – 100	125 – 200	optional 40 – 200
	Body with centering cams suitable for sandwiching between flanges PN 6-40 and 100 class 150 / 300. Standard strainer	Cylindrical body Standard strainer	Fine screen
Mesh size	1.25 mm	1.6 mm	0.25 mm

Description

Straight-through **bellows-sealed** stop valve with flanges to EN 1092. The valve is designed for shutting off and throttling neutral gases, vapours and liquids in all sectors of industry.

Material

Туре	DN	Pressure rating	EN	ASTM*)
GAV 63F	15 – 200	PN 16, JIS/KS 10K	GJL-250	A48-40B
GAV 64F	15 – 250	PN 16	GJS-400-18-LT	A536-60-40-18
GAV 65F	15 – 250	PN 25	GJS-400-18-LT	A536-60-40-18
GAV 66F	15 – 200	PN 25, PN 40, Class 150, Class 300, JIS/KS 20K	1.0619	A216WCB
GAV 66AF	15 – 100	PN 40	1.4408	A351CF8M

^{*)} Observe different physical and chemical properties to DIN material.

Specification

Туре	Pressure rating	РМА	TMA
GAV 63F	PN 16	16.0 bar / 120°C	300°C / 9.6 bar
UAV DOF	JIS/KS 10K	14.0 bar / 120°C	220°C / 10.0 bar
GAV 64F	PN 16	16.0 bar / 120°C	350°C / 11.2 bar
GAV 65F	PN 25	25.0 bar / 120°C	350°C / 17.5 bar
	PN 25 ¹)	25.0 bar / 50°C	400°C / 14.8 bar
	PN 40 ²)	40.0 bar / 50°C	400°C / 23.8 bar
GAV 66F	Class 150	19.6 bar / 38°C	425°C / 5.5 bar
	Class 300	51.1 bar / 38°C	425°C / 28.8 bar
	JIS/KS 20K	34.0 bar / 120°C	425°C / 20.0 bar

¹⁾ DN 200 2) DN 15 - 150

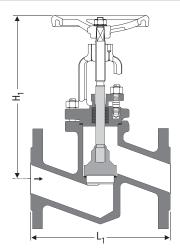
Dimensions [mm]

	DN	15	20	25	32	40	50	65	80	100	125	150	200	250
	PN	130	150	160	180	200	230	290	310	350	400	480	600	730
	JIS/KS 10K	133	153	163	183	203	229	293	309	349	395	479	592	-
Α	JIS/KS 20K	152	178	200	-	224	259	-	304	340	-	428	537	_
	Class 150	108	117	127	_	165	203	_	241	292	_	_	_	_
	Class 300	152	178	203	-	229	267	_	317	356	_	445	559	_
В		205	205	217	217	243	243	263	287	383	416	450	622	763
C		125	125	125	125	200	200	200	200	315	315	315	500	500

Weights [kg]

	DN	15	20	25	32	40	50	65	80	100	125	150	200	250
GAV 63F, GAV 64F, GAV 65F		4	4	5	7	10	12	16	21	36	52	75	145	180
GAV 66F	PN	4	5	6	8	11	14	19	26	44	64	88	180	_
GAV 66F	Class 150	5	6	8	_	10	12	-	25	41	-	_	-	_
GAV 66F	Class 300 / JIS/KS 20K	6	7	9	-	11	15	-	29	49	-	94	193	-
GAV 66AF		4	5	6	8	11	14	19	26	44	_	_	-	_

If the following differential pressures are exceeded in valves with standard plug, a pressure balance plug is required.


Pressure balance plug

	DN	65	80	100	125	150	200	250	300
GAV 63F, GAV 66F	∆p bar	-	-	-	-	-	10	-	6

$\mathbf{K_{vs}}$ Values [m³/h] of valves with throttling plug

DN	15	20	25	32	40	50	65	80	100	125	150	200	250
GAV 6xF,	5.4	6.6	11.9	19.6	29.3	47.2	74.6	101.6	186	259	369	522	827

Stuffing-box sealed stop valve GAV... In versions with pressure balance plug, the flow direction is opposite to the illustration.

Description

Straight-through **stuffing-box sealed** stop valve with flanges to EN 1092 or butt-weld ends (BW) to EN 12627. The valve is designed for shutting off and throttling neutral gases, vapours and liquids in all sectors of industry.

Material

Туре	DN	PN	EN	ASTM*)
GAV 126	50 – 200	63	GP240GH+N	A216WCB
GAV 130	50 - 200	100	GP240GH+N	A216WCB
GAV 136	15 – 25	160	P250GH	A105
GAV 136	32 – 200	160	GP240GH+N	A216WCB
GAV 136SE	15 - 50	160	16M03	A182F1
GAV 136SE	65 – 200	160	GP240GH+N	A216WCB
Up to 550 °C				
GAV 126	50 – 200	63	G17CrMo5-5	A217WC6
GAV 130	50 – 200	100	G17CrMo5-5	A217WC6
GAV 136	15 – 25	160	13CrMo4-5	A182F11
GAV 136	50 – 200	160	G17CrMo5-5	A217WC6
GAV 136SE	15 - 50	160	13CrMo4-5	A182F11
GAV 136SE	65 – 200	160	G17CrMo5-5	A217WC6

^{*)} ASTM nearest equivalent is stated for guidance only. Physical and chemical properties comply with EN.

Specification

Tuno	DN	Material	Servi	ce press	ure p /	Inlet ten	nperatu	re T (baı	rg/°C)
Туре	PN	wateriai	20	300	400	450	500	530	550
GAV 126	63	GP240GH+N	63	44	38	21	-	-	-
GAV 130	100	GP240GH+N	100	69	60	33	_	_	-
GAV 136, GAV 136SE	160	P250GH/GP240GH+N	160	110	95	53	-	-	-
GAV 136SE	160	16M03	160	137	120	110	71	36	-
GAV 126	63	G17Cro5-5	63	63	57	53	41	23	15
GAV 130	100	G17Cro5-5	100	100	90	84	65	37	23
GAV 136, GAV 136SE	160	13CrMo4-5/G17Cro5-5	160	160	144	135	104	59	37

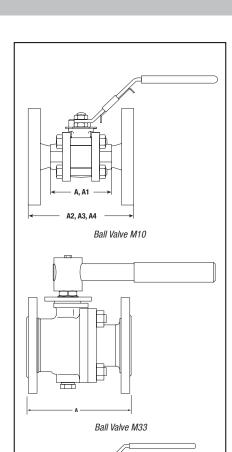
Dimensions [mm]

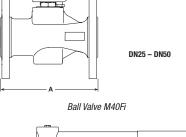
PN 63-160 flanged ends	DN	15	20	25	32	40	50	65	80	100	125	150	200
Overall length	L ₁	210	230	230	260	260	300	340	380	430	500	550	650
GAV 126, GAV 130, GAV 136	H	230	230	230	310	310	315	415	500	550	620	625	855
PN 63 -160 butt-weld ends	DN	15	20	25	32	40	50	65	80	100	125	150	200
Overall length	L ₁	150	150	160	180	210	250	420	460	510	600	650	750
GAV 136SE	H ₁	230	230	230	310	310	315	415	500	550	620	625	855

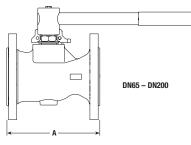
Weights [kg]

PN 63 – 160 flanged ends	DN	15	20	25	32	40	50	65	80	100	125	150	200
GAV 126		-	-	-	_	-	25	40	55	85	125	150	260
GAV 130		_	-	-	_	_	26	45	58	88	135	170	285
GAV 136		9.5	11	12.5	16.5	20.5	26	45	60	90	135	175	320
PN 63 – 160 butt-weld ends	DN	15	20	25	32	40	50	65	80	100	125	150	200
GAV 136SE		6.5	7.5	8.5	11	13.5	17	30	45	72	110	165	215

If the following differential pressures are exceeded in valves with standard plug, a pressure balance plug is required. From size DN 125 with balance plug fitted as standard.


Pressure balance plug


	DN	65	80	100	125	150	200
GAV 126, GAV 130, GAV 136, GAV 136SE	∆p bar	110	70	44	33	21	14


K_{vs} Values [m³/h]

	DN	15	20	25	32	40	50	65	80	100	125	150	200
GAV 126, GAV 130, GAV 136	PN 63, 100, 160	2.7	4	5	16	17	26	50	80	125	200	280	580

Ball Valve M40Fi3

DescriptionGBV ball valves have been designed for use as an isolating valves and can be used with the majority of industrial fluids for services ranging from vacuum to higher temperatures and pressures.

Materials

Туре	DN	Pressure rating	EN*)	ASTM
M10S2	8 - 65	PN 100	1.0460 galvanised	A105 galvanised
M10S4	8 - 65	PN 100	1.4404	A 182 F 316L
M10Vi2	8 - 65	PN 100	1.0460 galvanised	A105 galvanised
M10Vi3	8 - 65	PN 100	1.4404	A 182 F 316L
M33F3	50 – 200	Class 300	1.4408	A351CF8M
M40Fi3	25 – 200	Class 300	1.4408	A351CF8M

^{*)} ASTM nearest equivalent is stated for guidance. Physical and chemical properties comply with EN.

Pressure / temperature limits

Туре	Pressure rating	PMA ¹)	TMA ¹)
M10S2, M10S4	PN 100	100 bar / 60°C	260°C / 0 bar
M10Vi2, M10Vi3	PN 100	70 bar / 40°C	260°C / 0 bar
M33F3, M40Fi3	Class 300	51 bar / 38°C	260°C / 0 bar

¹⁾ Note that the type of end connection may reduce the temperature/pressure limit.

Dimensions [mm]

Туре	Bore	DN	8	10	15	20	25	32	40	50	65	80	100	150	200
		Screwed Butt-weld (A)	63	63	63	68	86	97	106	124	152	_	_	_	_
		Socket-weld (A1)	60	63	51	59	84	93	102	118	152	-	_	-	-
M10S	reduced	Class 150 (A2)	-	-	108	117	127	140	165	178	-	_	-	-	_
		PN 40 (A3)	_	-	130	150	160	180	200	230	_	_	_	_	-
		Class 300 (A4)	-	-	140	152	165	178	190	216	241	_	_	_	-
		Screwed Butt-weld (A)	66	66	66	72	87	104	110	125	153	-	_	_	_
		Socket-weld (A1)	63	63	66	60	84	94	102	118	152	_	_	_	-
	reduced	Class 150 (A2)	-	-	108	117	127	140	165	178	_	-	-	-	-
		PN 40 (A3)	-	-	130	150	160	180	200	230	-	-	-	-	_
M10Vi		Class 300 (A4)	-	-	140	152	165	178	190	216	241	_	_	_	_
WITOVI		Screwed Socket-weld (A)	66	66	66	72	87	104	110	125	153	-	_	_	_
		Socket-weld (A1)	63	63	64	84	98	106	124	152	-	-	_	_	-
	full	Class 150 (A2)	_	_	117.4	136.4	155	163.6	183.2	215.2	_	_	_	_	_
		PN 40 (A3)	_	_	130	150	160	180	200	230	-	-	_	_	_
		Class 300 (A4)	-	-	140	152	165	178	190	216	_	_	_	_	_
M33F3	full	Class 150 (A)	-	-	_	_	-	ı	ı	178	190	203	229	394	457
เขเออเรอ	Iuli	Class 300 (A)	_	_	_	_	_	-	_	216	241	283	305	403	502
MAUEIS	reduced	Class 150 (A)	-	_	_	_	127	140	165	178	190	203	229	267	292
IVI4UF13	reduced	Class 300 (A)	_	_	_	_	165	178	190	216	241	283	305	403	419

Weights [kg]

Туре	Bore	DN	8	10	15	20	25	32	40	50	65	80	100	150	200
		Screwed, butt-weld, socket-weld	0.61	0.61	0.61	0.7	1.27	1.77	2.5	3.5	6.9	-	-	_	-
M10S	red.	PN 40	-	-	2.2	2.9	3.9	5.4	6.5	8.8	_	-	-	_	_
		Class 150	-	_	1.65	2.2	3.38	4.44	5.84	8.99	-	-	-	-	_
		Class 300	-	_	2.2	2.9	4.5	7	8.36	11.2	17.5	-	-	_	_
		Screwed, butt-weld, socket-weld	0.65	0.65	0.72	0.95	1.6	2.05	2.75	4.25	7.5	-	-	-	-
	red.	PN 40	-	_	2.3	3.2	4.2	5.7	6.8	9.5	_	-	-	_	_
		Class 150	-	_	1.77	2.35	3.47	4.47	5.96	9.16	-	-	-	-	_
M10Vi		Class 300	-	_	1.7	2.28	2.91	4.15	5.88	8.12	15.85	-	-	-	_
		Screwed, butt-weld, socket-weld	0.65	0.72	0.95	1.6	2.05	2.75	4.25	7.5	-	-	-	-	-
	full	PN 40	-	_	2.6	3.8	4.7	6.4	8.3	12.8	_	-	-	_	_
		Class 150	-	_	1.87	2.73	3.55	4.76	5.82	11.91	_	-	-	-	_
		Class 300	-	_	2.4	3.79	5.01	6.5	9.22	13.99	_	-	-	-	_
M33F3	full	Class 150	-	-	-	-	-	_	-	10.8	16.2	20	35.3	80.2	140
いいろしてる	lull	Class 300	-	-	-	-	_		-	14.8	22.8	30	50	111.2	185.3
M40Fi3	red.	Class 150	-	-	-	-	2.9	3.8	5.4	7.9	12	15.8	24.8	43.8	82.5
WHUFIS	rea.	Class 300	-	_	_	-	4.5	5.7	8.2	10.3	16	22.3	36.1	66.6	117.5

K_{vs} Values [m³/h]

DN	8	10	15	20	25	32	40	50	65	80	100	150	200
M10S2 / M10S4 reduced	2,5	6,8	6	10	27	49	70	103	168	-	-	_	-
M10Vi2 / M10Vi3 reduced	2,5	6,8	6	10	27	49	70	103	168	-	-	-	_
M10 Vi2 / M10 Vi3 full	-	-	17	36	58	89	153	205	-	-	-	-	-
M33 F3 full	-	-	-	-	-	-	-	300	430	750	1030	2410	4800
M40 Fi3 reduced	T -	_	_	_	30	40	81	103	197	248	581	735	1600

Introducing the GESTRA GAV 6

The high integrity A3S bellows sealed valve is suitable for use under higher pressure steam, gas, and liquid applications as it is designed to ASME Class 300.

Key features and benefits

- Bellows sealed design eliminates emissions for improved energy efficiency
- Fully compliant with the European Pressure Equipment Directive 2014/68/EU
- Maintenance free giving long life and low cost of ownership
- Unaffected by vibration and will operate over a wide range of pressures and temperatures

Page

As Europe's largest provider of boiler equipment, GESTRA meets all the needs of today's market: a broad spectrum of products, faster time-to-market for new products, more performance for less money and customized solutions and services. This unique market position is based on extensive experience acquired over more than 50 years in the design and manufacture of high-quality safety-oriented control equipment. To compete in a truly global market, GESTRA is continuing to consolidate the domestic market and, simultaneously, stepping up its efforts to deepen international activities outside Europe in order to optimize and extend its network of sales and marketing organizations all over the world. GESTRA technology is tailored to your needs, offering you the right solution – be it conventional or bus-based – for your land or marine applications.

Hight-tech for enhanced safety and reliability!

Industrial Electronics

Overview	94
The benefits of SPECTOR <i>connect</i>	95
SPECTOR <i>smart</i>	95
GESTRA Steam boiler equipment with CONNECT technology	96
The benefits of SPECTOR module / SPECTOR module Touch	97
GESTRA Steam boiler installation SPECTOR module	98
GESTRA Condensate monitoring	
How to read type codes	100 – 101
GESTRA Boiler equipment	102 – 103
Type approval nos. at a glance	
Equipment for steam & hot water boilers	
Level control, monitoring and limitation	
Basics of SPECTOR connect	
Level limitation (low and high level alarms) SPECTORconnect	
Level control SPECTOR connect	
Control & visual display system SPECTOR <i>control</i>	
Basics of SPECTOR module	117
Self-monitoring low/high-level alarms SPECTOR <i>module</i>	
High level limiters SPECTOR <i>module</i>	
Modulating level control SPECTOR <i>module</i>	
Level control SPECTOR <i>compact</i>	124 – 125
Accessories for liquid-level alarms fitted in external level control pots	126 – 127
Level control for very high pressure/temperature ranges	
Level control for very high pressure/temperature ranges	120
Level electrodes and controls for marine applications	129 – 130

Safety, reliability, availability and economy have always enjoyed top priority in boiler operation. To an increasing extent, another aspect is being added for the plant operators: process automation and visualization.

To meet these stringent requirements, GESTRA AG has – for more than five decades now – been working exclusively with electrode systems that are low in maintenance and wear; in contrast to other systems, they function entirely without moving parts, which leads to high service lifetimes and very low failure rates.

By now, these GESTRA electrode systems are being applied in many different areas of the energy supply centre. In addition to the boiler equipment itself, these units are also used in condensate tanks, pump-driven return installations, steam regenerators etc. With a low response sensitivity of $>0.5~\mu\text{S/cm}$, even operation with demineralization equipment does not pose a problem. In general, the entire energy supply centre is only as effective as its weakest element. Many plant operators, designers and manufacturers are therefore no longer prepared to enter into any compromises in this area.

Nothing is as cost-intensive as a production outage.

Over and above these aspects, the requirements for the equipment of an energy supply centre tend to differ greatly. The requirements can no longer be met with one and the same system, as was perhaps the case only 10 to 15 years ago. The wishes expressed by the customers have always been the driving force behind GESTRA's innovative developments, and this is still the case today.

There is no longer a "one size fits all" system for customer requirements!

Another step forward was taken for the GESTRA equipment components through the introduction of the SPECTOR family, which focuses on meeting the customer's specific needs. The family now consists of SPECTOR*compact*, SPECTOR*connect*, SPECTOR*module* and SPECTOR*smart*.

SPECTORcompact

SPECTOR*compact* comprises systems that facilitate the easy replacement of existing self-acting systems. Measurement values are transferred as standard 4–20 mA signals or can be incorporated into existing controllers via integrated volt-free relay contacts without any need for additional electronic control units. If necessary, controllers are of course also available for implementing the entire controlled systems.

SPECTOR connect

SPECTOR*connect* offers easy integration into automation concepts by means of remote data transmission and parameter setting.

Thanks to many technical innovations, the design, erection and commissioning of plants is simplified considerably. A tried and tested system that meets the requirements made on boiler equipment today and in the future. Now, with SPECTOR*connect*, a large amount of process-relevant data can be transmitted for the first time. Further information is given in the separate brochure "Equipment for Energy Supply Centres – SPECTOR*connect*"

SPECTOR *module*

The SPECTOR*module* line represents a systematic advancement of the proven GESTRA technology. Using the most modern electronic components and constituting the state of the art, these systems were designed with a focus on ease of handling, reducing the installation expense, and providing cost-effective solutions.

New units were developed as demand-oriented solutions for boiler automation. The scope of the parameterization was limited to the most essential functions to ensure intuitive operating of the controllers.

Depending on the task at hand, the customer can choose between the system variants SPECTOR*module* and SPECTOR*module* Touch.

SPECTOR*module* concentrates on the key functions, and the parameters are set by means of a rotary pushbutton.

SPECTOR module Touch

The SPECTOR*module* Touch version focuses on the essentials: the main functions and a clear, intuitive user interface.

With this series, the controller was separated from the operating unit, which means that the laborious wiring for sensors, feedback, limits, valve actuation etc in the control cabinet door is no longer required.

Universal controllers generally entail a large number of parameter settings, making the operating workflow and the setting of parameters more difficult.

In the development of the SPECTOR*module* Touch series, clear and easily understandable operating was a top priority.

Thanks to the intuitive user interface, the operator can enter the parameters rapidly and reliably. The colour touch display leads directly to the parameterization level. A virtual numerical keypad is shown, so that values can be changed or functions selected.

Care was taken to ensure that the various controllers always have the same clear, uniform operating structure.

To give customers and plant operators greater convenience, we design our systems with a focus on

- optimized system interfaces
- minimized maintenance

SPECTOR module
SPECTOR connect

SPECTOR compact

GESTRA – always the right solution!

1. No risk of overheating:

Benefits at a glance

■ Patented thermal barrier in cylindrical body above electrode flange

Gestra

- Electronic temperature protection in the terminal box
- Patented connection arrangement
- Minimization of thermal effects

2. Easy installation and maintenance:

- Freely accessible connecting terminals at the control units
- Large terminal box makes for easy installation

3. Increased safety:

- Active cable monitoring with more than twice the previous maximum cable length
- Easy to integrate into visual display and auto mation systems

GESTRA SPECTOR*connect*

More safety, more efficiency, more steam

Intelligent, global monitoring

An extensive and adjustable data connection enables global system monitoring. Clear graphics, historic data and alarms provide clear information about the steam generation process.

Always state of the art

SPECTOR*connect* satisfies the requirements of the latest standards for safe steam boiler operation.

One unit, several functions

All the important functions necessary for efficient system operation have been integrated in a single unit, saving installation time and cutting costs.

Reliable service interval monitoring

The plant operator is informed when components require a service or the system is outside its normal operating range.

Constantly low energy consumption, reduced process costs

Temperature-compensated measurement and control of conductivity in the steam drum itself reduces the blowdown volume to an absolute minimum.

Market and usage

The SPECTORconnect system is used in steam and hot water boiler systems to EN 12952 and EN 12953.

Development has consistently focused on safety, enabling a SIL 2/3 rating to been achieved for conductivity limiting as well.

The URB 60 display unit functions as a data interface and supports various data protocols.

The pressure and temperature ratings are up to 183 bar and 357 °C.

Less is more!

From little acorns big oaks grow. With SPECTOR connect by GESTRA, a new era has begun in the measurement and control of boiler systems:

- Less cabling (preconfigured cable connection)
- Less installation work
- Less space needed in control cabinets
- Fewer control units
- Less wear and tear
- Less maintenance
- Fewer production outages
- Lower costs
- More control
- Better process overview
- Higher availability
- Enhanced reliability
- Greater plant efficiency
- Better utilization of energy
- Longer plant operation times

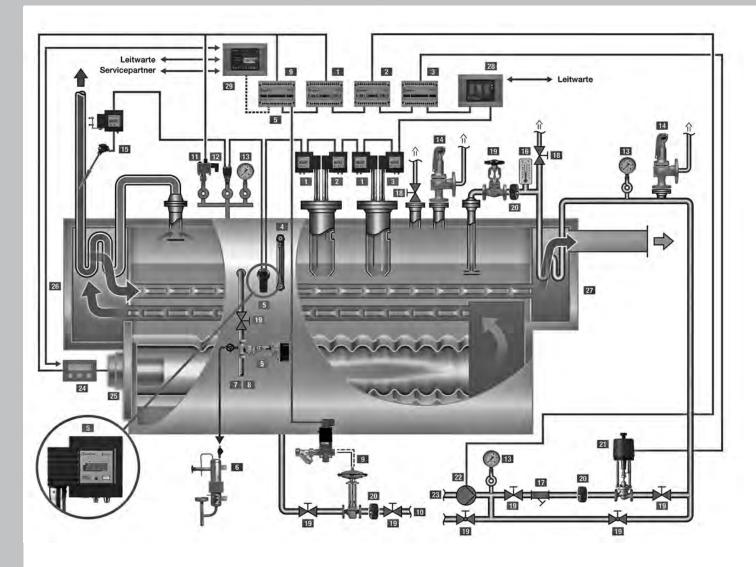
GESTRA SPECTOR*smart*

Keep your plant up and running

The SPECTOR connect system keeps the steam boiler running reliably. However, unforeseen events can happen at any time and impact the boiler system. The SPECTORsmart provides a detailed overview of your plant, and displays all the events detected by sensors. This way, alarms can be triggered immediately for the relevant area, enabling targeted intervention. The days of time-consuming fault localisation are past! What's more, the system can let you know when maintenance is due, reducing the likelihood of sudden failure.

Improve efficiency and sustainability

The industry has committed to continually reducing emissions. We help you play your


With SPECTORsmart, steam production is constantly monitored and readings logged. Set parameters are optimised to enhance boiler efficiency. This means lower fuel consumption and therefore better CO_2 figures. The results have a positive effect on your sustainability targets!

GESTRA Steam Boiler Equipment with SPECTOR connect

e. g. for operation without constant supervision (72 hrs) as per EN 12953

GESTRA Steam Boiler Equipment SPECTOR*connect*

- "SMART" water level limiting system: level electrode with periodic self-testing NRG16-60, level switch URS 60
- "SMART" high level limiting system with periodic self-testing: level electrode NRG 16-61, level switch URS 61
- Continuous water level control system: level electrode NRG 26-60, level controller NRR 2-60
- Direct water level indicator
- Conductivity control / continuous and intermittent boiler blowdown: conductivity electrode LRG 16-61, continuous blowdown controller LRR 1-60, continuous blowdown valve BAE 46
- Sample cooler PK for safe and precise manual sampling
- 7 Flash vessel for heat recovery
- Blowdown cooler for heat recovery
- Intermittent blowdown valve MPA, three-way pilot valve

- Blowdown receiver
- 11 Pressure limiter
- 12 Pressure controller/transmitter
- 13 Pressure gauge
- Safety valve
- Safety temperature limiter for superheater, resistance thermometer TRG 5-65, temperature transmitter TRV 5-60
- 16 Thermometer
- Strainer GSF
- 18 Vent valve
- Shut-off and bypass valve GAV
- 20 Non-return valve RK 86
- 21 Electrically/pneumatically operated control valve GCV
- 22 Feedwater pump

- Make-up water monitoring: full demineralization via conductivity monitoring LRG 16-9/LRS 1-7, partly demineralization via monitoring residual hardness
- Burner control with MODbus RTU interface
- 25 Burner
- 26 Superheater
- 27 Economiser
- 28 Operating unit URB 60
- SPECTOR control is a universal controller and operating unit for process data acquisition (with CAN, MODbus, Ethernet, OPC and optional Profibus interface) and can be used instead of URB 60

The benefits of SPECTOR module / SPECTOR module Touch

SPECTOR *module*

- Compact design reduces installation work
- Easily accessible connection terminals
- Supply voltage 24 VDC, i. e. independent of national supply voltages
- Features specific to your application enable rapid start-up
- Easy operation via rotary knob/pushbutton ensures fast setup and installation
- A 7-segment numeric display provides information on the latest readings and messages

SPECTOR module Touch

- Separation of power components and operating level, i. e. no elaborate wiring needed in the control cabinet door.
- Use of a colour touch display for intuitive, clear operating that is language-neutral

Level:

- Intuitive operating through touch display incl. visualization of the actual, set and control values
- Trend line for identifying potential optimisation measures
- PI control response

Optional: • 3-element control

Actual-value output 4-20 mA

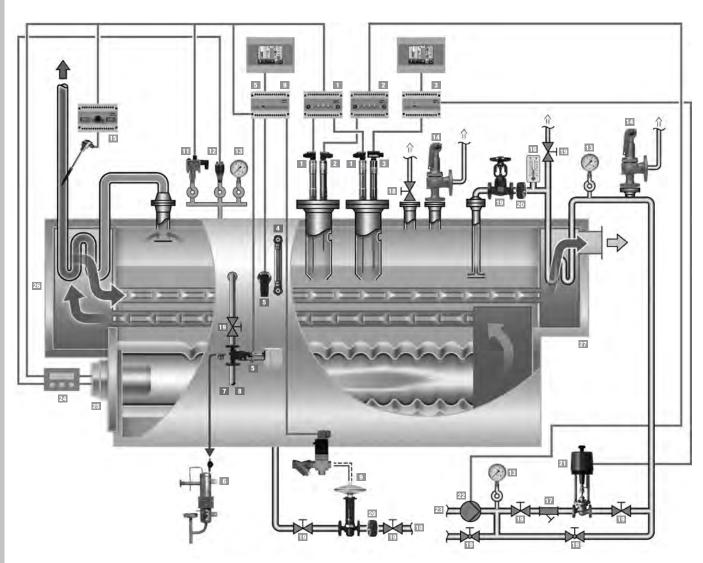
- Conductivity: Intuitive operating through touch display incl. visualization of the actual, set and control values
 - Type approval as per "WÜ 100" (VdTÜV bulletin on water monitoring facilities)
 - ▶ Integrated flushing pulse for reducing manual maintenance
 - Integrated, program-controlled intermittent blowdown means no separate module is required for actuating the blowdown valve
 - Interlocking input to prevent simultaneous operation of two or more intermittent blowdown valves at one blowdown receiver

The 24 VDC version offers the following advantages:

- Standard DC supply network for sensors and electronic control units, dispensing with the need for additional wiring
- Enhanced EMC properties for lower sensitivity to interference and therefore improved availability
- Independence from different national mains voltages

Only 230 VAC available as the supply voltage? No problem, we have tailormade power supply units to bridge the gap.

Total power consumption of connected equipment


The total power output of the connected equipment determines which power supply unit is used and/ or whether the existing 24 V DC supply system can accept the additional load.

The 24 V DC versions of the sensing units LRGT and NRGT have established themselves and facilitate a standardized voltage supply arrangement.

Sample calculation for a 24 V power supply unit:

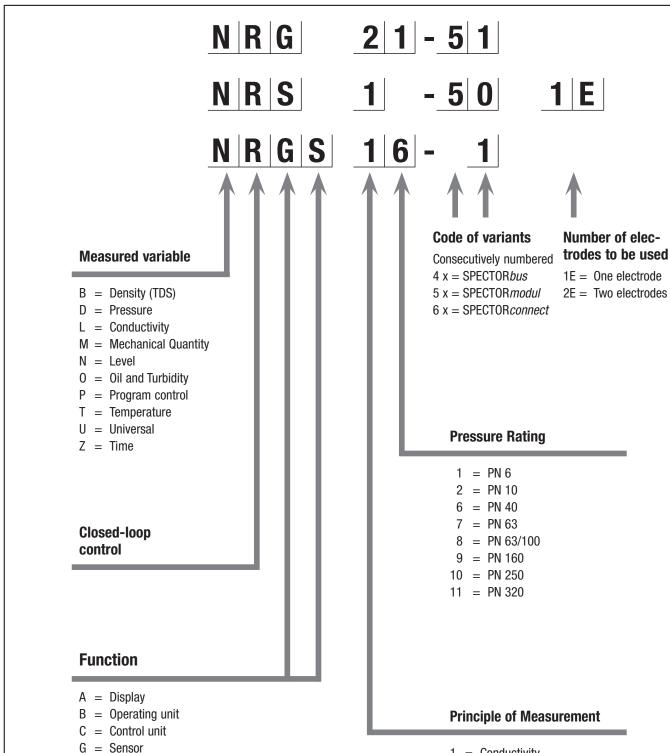
Unit	Power	Qty	Total consumption
NRS 1-50, 1E/2E	7 W	1	7 W
NRS 1-51	7 W	1	7 W
NRGT 26-2	7 W	1	7 W
NRR 2-52 with	5 W	1	5 W
URB 55	8 W	1	8 W
LRGT 16-3	7 W	1	7 W
LRR 1-52 with	5 W	1	5 W
URB 55	8 W	1	8 W
			Sum 54 W

GESTRA Steam Boilder Equipment SPECTOR *module*

- "SMART" level electrode NRG 16-50 for low-water level limiting, level switch NRS 1-50, SIL 3
- Separate "SMART" level electrode NRG 16-51 for high level alarm, level switch NRS 1-51, SIL 3
- Water level control with high level alarm, remote indication of water level: level electrode NRG 26-21, level controller NRR 2-52 and control valve GCV
- Direct water level indicator
- Conductivity control & indication, conductivity limit switch and continuous blowdown control: conductivity electrode LRGT 16-2, continuous blowdown controller LRR 1-53, continuous blowdown valve BAE
- 6 Sample cooler

- Flash vessel
- Blowdown cooler
- Automatic intermittent blowdown: intermittent blowdown valve MPA, pilot valve
- 10 Blowdown receiver
- Pressure limiter DSF
- 12 Pressure transducer DRT
- 13 Pressure indication
- Safety valve GSV
- Safety temperature monitor/limiter, resistance thermometer TRG, temperature switch TRS 5-50, SIL 3
- 16 Thermometer

- 17 Strainer
- 18 Vent valve
- Shut-off valve and bypass valve
- 20 Non-return valve
- 21 Electrically/pneumatically operated control valve GCV
- 22 Feedwater pump
- Feedwater/condensate monitoring
- 24 Burner control
- 25 Burner
- 26 Superheater
- 27 Economiser


Steam and Condensate System

- Non-return valve RK 86 with special spring 20 mbar
- Steam trap with trap monitoring equipment, test chamber VKE, electrode NRG 16-19, test station NRA 1-3 for up to 16 steam traps
- Contamination detectors (ingress of acids, alkalis, etc.): Conductivity electrode LRG 16-9, Conductivity switch LRS 1-7a
- Monitoring for the ingress of foreign substances such as oil, grease etc.: Oil and turbidity detector OR 52/5
- Pneumatic three-way control valve for the discharge of contaminated condensate
- Condensate receiver tank
- Safety circuit

α

GESTRA Type Designations for Boiler Controls

- 1 = Conductivity
- 2 = Capacitance
- 3 = Ultrasonic
- 4 = Photoelectric
- 5 = Temperature

N = Power supply unit

R = Controller

T = Transmitter

V = Preamplifier

S = Switch

GESTRA Type Designations for Boiler Controls

~

Function	Required	Recommended	Section	Equipment type	Type approval no.
		SPECTOR			
Water level limiters, two	yes	connect	HPSB 4.3 5.6.1 HPHWI 6.5.1	NRG 160 / URS 60 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy, relay contacts)	Type approved according to PED TÜV SWB xx-430 SIL 3
		module		NRG 150 / NRS 1-50 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy) and positive-action safety relay	Type examination to PED TÜV SWB xx-422 SIL 3
Water level limiter / High level alarm in BUS system	yes	connect	HPSB 4.3 5.6.1 5.5.2	NRG 16-60 / URS 60 NRG 16-61 / URS 61 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy, relay contacts	Type approved according to PED TÜV SWB/HWS xx-430 SIL 3
Water level limiter / High level alarm / Temperature limiter in BUS system	yes	connect	HPSB 4.3 5.6.1 5.5.2 5.6.3	NRG 160 / NRG 161 / URS60 / URS61 TRG 5-6. / TRV 5-60 / LRG 16-60 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy, relay contacts)	Water level (conductive): Type approved according to PED Temperature: Type approved according to PED Conductivitiy: Type approved according to PED TÜV SWB/HWS/STW(STB)/SWÜL xx-430 / SIL 2/3
Water level limiter with closed loop control and high level alarm	yes	module	HPSB 4.3 5.6.1 5.5.1 5.5.2	NRG 16-36 / NRS 1-50 / NRS 1-54 "SMART" limiter ("high integrity design") with periodic self-testing routine (loss of redundancy) and positive-action safety relay	Type examination to PED TÜV SWB xx-422 TÜV WR/WB xx-424 (controller)
On-off water level limiter with high level alarm	yes	compact	HPSB 5.5.1 5.5.2	NRGS 16-1 On-off control	TÜV WR xx-388
		module		NRG 16-52 / NRS 1-52 / NRS 1-53 / NRS 1-54 / NRS 1-55 / NRS 1-56 Fixed switchpoints	TÜV WR/WB xx-424
		module		NRG. 26-1 / NRS 2-50 / NRS 2-51 Variable switchpoints	TÜV WR xx-425
Continuous water level imiter with high level alarm	yes	compact	HPSB 5.5.1 5.5.2	NRGT 26-2 with continuous monitoring Current output 420 mA	TÜV WRS xx-432 K
		connect		NRG 26-60 / NRR 2-60 / NRR2-61 / URB 60	TÜV WR xx-431
		module		NRG. 26-2 / NRS 2-50 / NRS 2-51 / NRR 2-50 / NRR 2-51	TÜV WR xx-425
				NRG. 26-2 / NRR 2-52 / NRR 2-53	TÜV WR xx-427
Separate high level alrm	acc. to EN. Require for insta lations t	required acc. to EN. Required	NRG 151 / NRS 1-51 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy) and positive-action safety relay	Type examination to PED TÜV SHWS xx-423 SIL 3	
			for instal- lations to TRD 72h	NRG 16-4 / NRS 1-52 "Conventional design"	TÜV WR/WB xx-424
Safety temperature limiter	yes	module	HPHWI 6.5.2.3	TRG 5-6. / TRS 5-50 "SMART" equipment ("high integrity design") with periodic self-testing routine (loss of redundancy) and positive-action safety relay	Type approved according to PED DIN CERTO STW/STB 1230 SIL 3

 $\label{eq:hdd} \mbox{HDD} = \mbox{High-pressure steam boiler}, \mbox{HDHW} = \mbox{High-pressure hot water installation}$

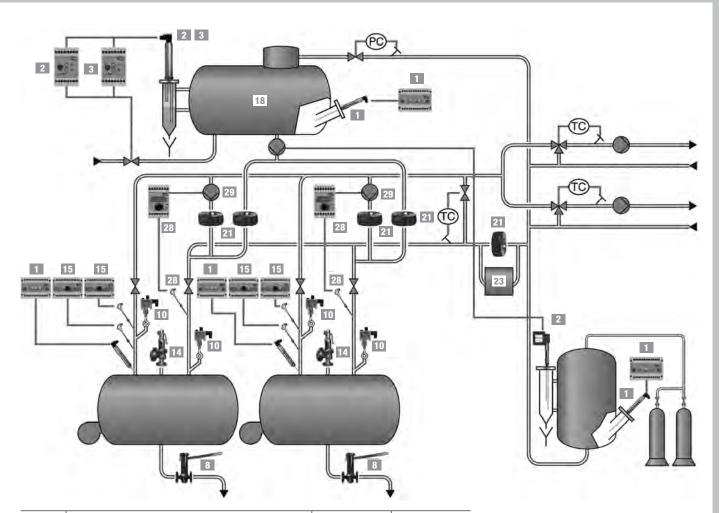
GESTRA Boiler Equipment acc. to EN 12953-6 (D)

Function	Required	Recommended	Section	Equipment type	Type approval no.
		SPECTOR			
Raising the return temperature	yes	connect	HPHWI 6.1.4 6.5.2.3	TRG5-6. / TRV 5-60 / URS60 / URB 60	Type approved according to PED TÜV STW(STB) xx-430
Safety pressure limiter	yes		HPSB 4.3 5.6.2 HPHWI 6.5.2.1	DSFF 001 "SMART" equipment	www.tuev.com 0000006024
conductivity limit etector for boiler vater *)	yes	yes <i>module</i>	HPSB 4.8.1	LRG 16-4 / LRS 1-50 LRG 16-9	Type approved according to PED TÜV WÜL xx-018
				LRG 16-4 / LRG 16-9 / LRGT 1 / LRR 1-50 / LRR 1-51 / LRR 1-52 / LRR 1-53	TÜV WÜL xx-017 Type approved according to PED
		connect		LRG 16. / URS 6. / URB 60	Type approved according to PED TÜV SWÜL xx-430
Automatic con- tinuous boiler	yes	connect	HPSB 4.8.1	LRG 16-60 / LRG 16-61 / LRR 1-60 / URB 60 / LRG 17-60 / SPECTOR <i>control</i>	TÜV WÜL xx-020
blowdown with limit signaling *)		module		LRG 16-4 / TRG 5-6. / LRR 1-52 LRGT 1 / LRR 1-53	Type approved according to PED TÜV WÜL xx-017
				LRG 16-4 / TRG 5-6. / LRR 1-50 LRGT 1 / LRR 1-51	Type approved according to PED TÜV WÜL xx-017
Automatic inter- mittent boiler blowdown	yes	compact	HPSB 4.6	TA 10 / TA 50	
		connect		LRR 1-60	
		module		LRR 1-52 / LRR 1-53	
Conductivity limit detector for salt- free make-up water *)		module	HPSB 4.8.4 HPHWI	LRG 16-4 / LRG 16-9 / LRS 1-50 / LRG 16-9 / LRS 1-7	TÜV WÜL xx-018 TÜV WÜL xx-014
Detecting residual hardness of saline feedwater			4.8.4		
Condensate monitoring for ingress of oil, fat, grease, acids, alkalis etc.	yes	module	HPSB 4.8.2 HPHWI 4.8.3	OR 52-5 / OR 52-6 LRG 16-9 / LRS 1-7 LRG 16-4 / LRS 1-50	TÜV WÜF xx-009 TÜV WÜL xx-014 TÜV WÜL xx-018

^{*)} Limits and reference values acc. to EN 12952-12 and EN 12953-10 $\,$

 $\label{eq:hpsb} \textit{HPSB} = \textit{High-pressure steam boiler}$

HPHWI = High-pressure hot water installation


W = Detector

WÜL = Water monitoring for conductivity (acids, alkalis, raw water etc.) WÜF = Water monitoring for ingress of foreign matter (oils, fats, grease, etc.)

Type Approval Number Code Classification societies for marine applications 0 2 Lloyd's Register See BG See-Berufsgenossenschaft RINA Registro Italiano Navale American Bureau of Shipping ABS KR Korean Register of Shipping BV Bureau Veritas Safety DNV Det Norske veritas **Measured quantity** W = Water T = Temperature D = Pressure **TÜV Bulletin Function** B = LimiterYear of approval R = Controlleror extension S = Switch

Function	Equipment	Type Approval Number
Water level controller with high level alarm	NRGT 26-1S Compact system with continuous level monitoring/ Current output 4-20 mA On-off control NRS 2-51 Continuous control NRR 2-50 NRGT 26-2S	DNV LR BV ABS RINA
"SMART" water level limiter ("high integrity design") with periodic self-testing routine (loss of redundancy)	NRG 16-50S NRS 1-50. 15 sec. In addition with positive-action safety relay and certified to SIL 3	DNV LR BV ABS
Combination electrode Water level controller Output 4-20 mA with 1 "SMART" water lever limiter with periodic self-testing routine (loss of redundancy)	NRG 16-38S NRS 1-50, 1E, 15 sec. In addition with positive-action safety relay and certified to SIL 3	DNV LR BV ABS
Combination electrode Water level controller Output 4-20 mA with 2 "SMART" water lever limiters with periodic self-testing routine (loss of redundancy)	NRG 16-39S NRS 1-50, 1E, 15 sec. In addition with positive-action safety relay and certified to SIL 3	
Conductivity monitoring with automatic temperature compensation – feedwater –	LRGT 16-1 LRG 16-9 LRS 1-7	DNV DNV
Cooling water monitoring – closed cycle –	ORGS Compact system	DNV LR BV

Item	Function	Measuring point	EN 12953
1	"SMART" Low level limiter ("high integrity design") level electrode NRG 16-50, level switch NRS 1-50, SIL 3	LSZA-	•
2, 3	Water level control with high level alarm, remote water level indication, level electrode NRG 16-52, level controller NRS 1-54, NRS 1-52 (HW)	LICSA+	•
8	Intermittent blowdown valve PA for manual boiler blowdown	QC	•
10	Pressure limiter DSH (+), DSL (-)	PSZA+ (-)	•
14	Safety valve GSV	PSV	
15	Safety temperature monitor / (limiter) Resistance thermometer TRG, temperature switch TRS 5-50, SIL 3	TSZA+	•
18	Feedwater tank		
21	Non-return valve		
23	Monitoring of condensate return	QISZA+	•
28	Raising of return temperature, resistance thermometer TRG, temperature switch TRS 5-52	TC-	•
29	Mixing pump		

~

Principles of Measurement

Conductivity measurement

The water level is detected between the electrode tips and the vessel wall (or reference electrode) and evaluated for control or limitation purposes. In this case it is essential that the medium is electrically conductive.

The high-integrity self-monitoring design of the level alarms ensures constant supervision of the insulating seal and electrode entry, immediately recognizing malfunctions in the system and failure of the electrode or supply cables. In addition, the equipment features periodic self-checking of the electronic control unit and the corresponding output contacts. Boilers of group IV require "SMART" (self-monitoring and routine testing) equipment.

Before installation, the length of the conductivity electrode rods must be cut to the required switching levels.

Capacitance measurement

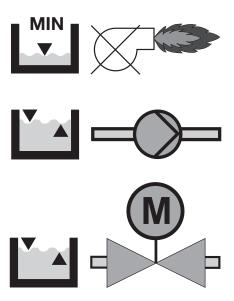
Electrode rod and vessel wall (or reference electrode) form a capacitor; air and the fluid to be controlled act as dielectric. Due to the different dielectric constants of air and boiler water the capacitance value between the electrode and the vessel wall changes concurrently with level changes.

The switchpoints can be continuously adjusted during operation and multiplied by connecting in parallel several electronic control units.

Types of Controls

Water level limiters

(High-level/low-level alarms)


As soon as the water level exceeds or falls below the adjusted switchpoints the burner protection circuit is interrupted (low level) or the feed pump is switched off (high level).

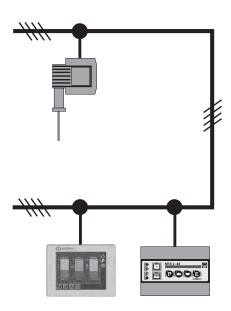
On-off level control

The water level is controlled between two fixed or adjustable switchpoints. The signals are directly transmitted to the feed pump or valve.

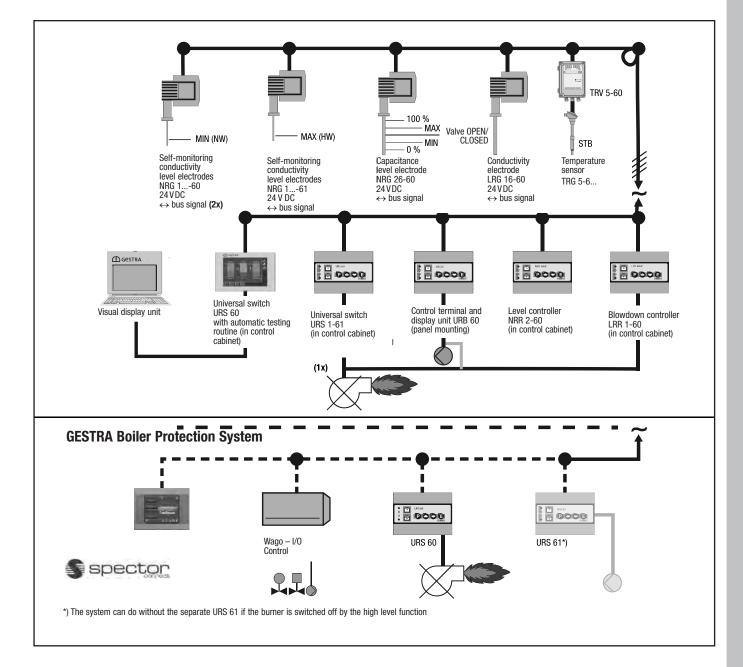
Modulating level control

The water level is continuously monitored and the actual value is compared with the adjusted set point by the associated controller. If a deviation between the two values is detected, a signal will be sent to the control valve to re-adjust the flowrate accordingly, thereby enabling a more economic and efficient steam plant operation.

Field Bus System Digital Data Exchange


SPECTOR*connect*

The SPECTOR*connect* system transfers the digitized measurement data acquired by the level probe to the electronic control unit located in the control cabinet. The centerpiece of this system is the stable and sophisticated CANbus (Controller Area Network). Several sensors and switches can be interconnected via one bus line.


Apart from active cable monitoring a CANbus system offers a host of benefits, such as increased design flexibility, reduced installation effort, optimized open and closed loop control, centralized operation and remote monitoring.

The standardised network opens up highly flexible possibilities for configuration. The CANopen protocol is used nowadays in medical equipment, electronic devices for marine applications, public means of transport and in burner and boiler controls of power plants.

Thanks to the many CANbus applications a great number of equipment and interface components are widely available, providing an ideal addition to our product range.

GESTRA SPECTOR*connect* boiler equipment:

The SPECTOR connect system digitally transmits measurement data from the probe to the electronic control unit in the control cabinet. It does this by means of a stable, sophisticated CAN (Controller Area Network) bus.

Several sensors and amplifiers can be interconnected by means of a CAN bus line. In addition to the active cable monitoring achieved in this way, the system offers numerous advantages for the planning, installation, display and optimisation of open-loop and closed-loop control systems, and enables problem-free link-up with other open bus systems.

The standardised network offers extremely flexible configuration options. In combination with the SPECTOR*control* open/closed-loop control, display and operator system, the SPECTOR*connect* can achieve bidirectional communication with the burner control, the central control room or – via UMTS – with the service partner.

The reliability of water level limiters made by GESTRA exceeds the requirement of the EN directives for SIL 2 safety chains. The system consists of two electrodes and one level switch.

The system is self-monitoring and features positive-action safety relays, extensive fault analysis for rapid detection of malfunctions and separate error messaging for both limiters.

Level Limitation

Low-Level Limiter

Control unit URS 60 in conjunction with **one** level electrode type NRG 16-60, 17-60, 19-60 or 111-60 constitutes a high-integrity self-monitoring low-level limiter with periodic self-checking and automatic routine testing of output relay contacts. Function:

■ Low-level alarm with **one** switchpoint.

The equipment detects min. water level (low-level alarm).

Application in steam and pressurized hotwater boilers according to EN 12952/..53.

Control unit URS 60 in conjunction with **two** level electrodes type NRG 16-60, 17-60, 19-60 or 111-60 constitutes a high-integrity self-monitoring low-level limiting **system** with periodic self-checking. The control unit features the following function:

■ Low-level alarm with **two** switchpoints.

The equipment combination detects low-water level (low-level alarm **system).**

Application in steam and pressurized hotwater boilers according to EN 12952/..53.

The electric device complies with the regulations for safety circuits to DIN EN 50156.

The liquid level data are transferred from the electrode NRG 1...-60 to the control unit via CAN bus, using the CANopen protocol.

The safety temperature limiter type TRG 5-6./ TRV 5-60 can be added to the system; for more information refer to pages 132 - 133.

High-Level-Alarm

Control unit URS 1-61 in conjunction with **one** level electrode type NRG 16-61, 17-61, 19-61 or 111-61 constitutes a high-integrity self-monitoring high-level alarm system with periodic self-checking and automatic routine testing of output relay contacts. Function:

■ High-level alarm

The equipment detects the max. water level.

Application in steam and pressurized hotwater boilers according to EN 12952/..53.

The electric device complies with the regulations for safety circuits to DIN EN 50156.

The liquid level data are transferred from the electrode NRG 1...-61 to the control unit via CAN bus, using the CAN open protocol.

Boiler Protection System

Description

The control unit URS 60 in combination with **two** level electrodes NRG 1.-60, the temperature sensor TRG 5-6../TRV 5-60 constitutes a self-monitoring boiler protection system with periodic self-testing and continuous monitoring of the output relays. The control unit features the following functions:

■ Low-level alarm with two switchpoints

The equipment combination detects the min. water level (low-level limiting **system**).

■ Safety temperature limiter

The equipment combination detects the max. allowable temperature.

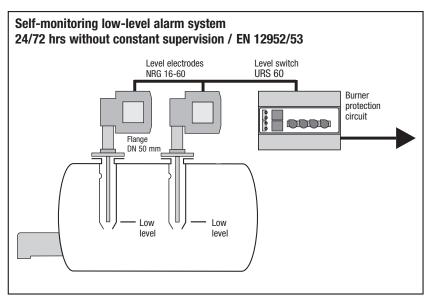
■ High-level alarm

The equipment combination detects the max. water level.

■ Or other customized combination.

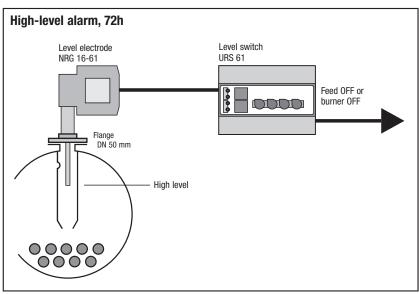
If more than four limiters are required, the control unit URS 61 can also be integrated in the system.

Application in steam and (pressurised) hotwater plants in accordance with EN 12952/..53.


The electrical equipment meets the requirements of the regulations for safety circuits according to DIN EN 50156.

The data of the sensors are transferred to the control unit via CANbus, using the CANopen protocol.

Technical Data


Туре	Pressure rating	End connection	Service pressure [bar] / Saturated steam temperature	Lengths supplied [mm]	Ambient temperature [°C]
NRG 16-60	PN 40	3/4"	32 / 238	500 - 3000	70
NRG 17-60	PN 63	3/4"	60 / 275	500 – 3000	70
NRG 19-60	PN 160	3/4"	100 / 311	500 – 3000	70
NRG 111-60	PN 320	1"	183 / 357	500 – 3000	70
NRG 16-61	PN 40	3/4"	32 / 238	500 – 1500	70
NRG 17-61	PN 63	3/4"	46 / 260	500 – 1500	70
NRG 19-61	PN 160	3/4"	100 / 311	500 – 1500	70
NRG 111-61	PN 320	1"	183 / 357	500 - 1500	70

Туре		PN	Stock code
NRG 16-60	1000 mm	40	3831042
URS 60	24 V DC		3356041
NRG 17-60	1000 mm	63	3832042
URS 60	24 V DC		3356041
NRG 19-60	1000 mm	160	3833042
URS 60	24 V DC		3356041
NRG 111-60	1000 mm	320	3356041
URS 60	24 V DC		3834042

If supervision is limited, the system can be operated with one electrode.

Туре		PN	Stock code
NRG 16-61	500 mm	40	3841041
URS 61	24 V DC		3356141
NRG 17-61	500 mm	63	3842041
URS 61	24 V DC		3356141
NRG 19-61	500 mm	160	3843041
URS 61	24 V DC		3356141
NRG 111-61	500 mm	320	3834042
URS 61	24 V DC		3356141

SIL 3

oring boiler prot EN 12952/53	tection system		24 V, DC
Level electrode NRG 16-61 Flange DN 50 mm High level	Level electrode NRG 16-60 Flange TRV DN 50 mm 5	Safety temp. monitor (limiter) TRG 5-6.	Sitop Smart Burner protection circuit

Туре		PN	Stock code
NRG 16-60	1000 mm		3514042
TRG 5-65			2671611
TRV 5-60			2691040
LRG 16-60	300 mm	40	3791044
URS 60			3356041
NRG 16-61	500 mm		3841041
URS 61	24 V		3356141
NRG 17-60	1000 mm		3544042
TRG 5-65			2671611
TRV 5-60			2691040
LRG 16-60	300mm	63	3792044
URS 60			3356041
NRG 17-61	500 mm		3842041
URS 61	24 V		3356141
NRG 19-60	1000 mm		3574042
TRG 5-65			2671611
TRV 5-60		100	2691040
URS 60		160	3356041
NRG 19-61	500 mm		3594141
URS 61	24 V		3356141
Optional: URB	60		3386043

Optional: URB 60 3386043

Level Controller NRR 2-60

- type approved -
- 3-position PI stepping controller with High and Low level alarm
- Optional: 3-element control
- Supporting rail for installation in control cabinets

Input:

- Capacitance level electrode NRG 26-60
- CANopen input signal
- 1 input for feedback potentiometer 0 1000 Ω
- For connecting the operating unit URB 60 Output:
- 1 volt free changeover contact for valve Open / Stop / Closed
- 1 actual value current output 4 20 mA
- Protection: IP 40
- Supply connection: 24 V DC; 4 W
- Weight: 0.8 kg

Level Controller NRR 2-61

- type approved -
- Continuous-action PI controller with two High and two Low level alarms
- Optional: 3-element control
- Supporting rail for installation in control cabinets

Input:

- Capacitance level electrode NRG 26-60
- 2 inputs 4 20 mA for flow metering
- CANopen input signal
- 1 input for feedback potentiometer $0 1000 \Omega$
- For connecting the operating unit URB 60 Output:
- 1 current output 4 20 mA for valve control
- 1 actual value current output 4 20 mA
- 4 volt free changeover contacts for High/ Low level alarm
- Protection: IP 40
- Supply connection: 24 V DC; 4 W
- Weight: 0.8 kg

Operating & Display Unit URB 60

For panel mounting 136 x 96 mm Input:

- Interface for data exchange with
- SPECTOR*connect* system

User interface

- Touchscreen, analog, resistive, resolution 640 x 480 pixels
- Illuminated

Electrical connection:

- 1 three-pole connector for voltage supply
- 1 nine-pole D-SUB connector for SPECTOR*connect*

Ethernet interface

- MODbus TCP
- Supply connection: 24 V DC, 8 VA

Protection:

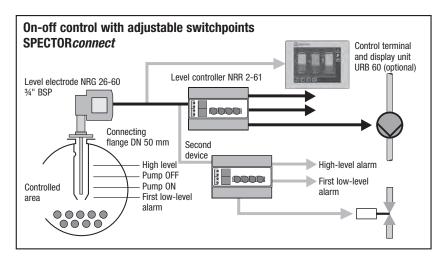
- Front: IP 65
- Back: IP 20
- Weight: 1.0 kg

Capacitance Level Electrode NRG 26-60

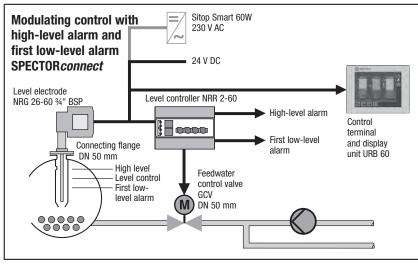
- type approved -

For continuous signalling of liquid levels

- Pressure rating PN 40
- Measuring range: H = 300 2000 mm
- Connection: G ¾" EN ISO 228-1


Materials:

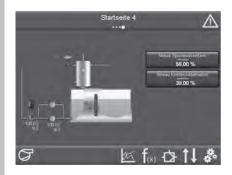
- Housing: 1.4571
- Measuring electrode: 1.4571
- Electrode insulation: PTFE
- Terminal box: 3.2161 (G ALSI8CU3)


Output:

- Incorporated in SPECTOR*connect* system Display & Operation
- Male/female connector M12 with 5 poles, A coded
- Seven-segment display with rotary push button
- Supply voltage: 24 V DC, 4 W
- Protection: IP 65
- Weight: 2.0 kg

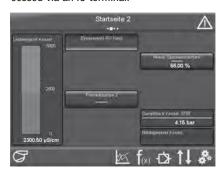
Туре		PN	Stock code
NRG 26-60 NRR 2-61	H = 1000 mm 24 V	40	3496047 3246141
URB 60			3386043

Туре		PN	Stock code
NRG 26-60	H = 1000 mm	40	3496047
NRR 2-60	24 V	40	3246041
URB 60			3386043


Ω

SPECTOR control // - The open/closed-loop control, display and operator unit

System description


- 10.4" infrared TFT touchscreen (IP 65)
- with the following interfaces
 - 2* Ethernet for Intranet / OPC / Modbus TCP communication
 - CANopen
 - Modbus RTU RS232 for a specific burner connection
 - USB interface for backup / upload function
 - BACnet (optional)
 - Profibus DP (optional)
- Bus terminals for mounting on a support rail for a maxiumum of:
 - 40 digital inputs 24 V
 - 40 digital inputs for relay / volt-free
 - 20 analog inputs (4..20 mA, 10R..1K2, 0..10V, PT 100)
 - 20 analog inputs (4..20 mA, 0..10V)

Function

The SPECTOR*control* (SC) is an open/closed-loop control, display and operating unit for a variety of uses in the control of technical equipment. All parameters, e.g. for a flowrate measurement, a steam calculator or regulator, can be set via the touchscreen with no programming knowledge.

Use of the SC means that open and closed-loop control and operator functions are all integrated in the unit. As a result, there is no need for the usual regulators from the SPECTOR*connect* family, such as the NRR 2-60 or URB. Additional signals are processed via an IO terminal.

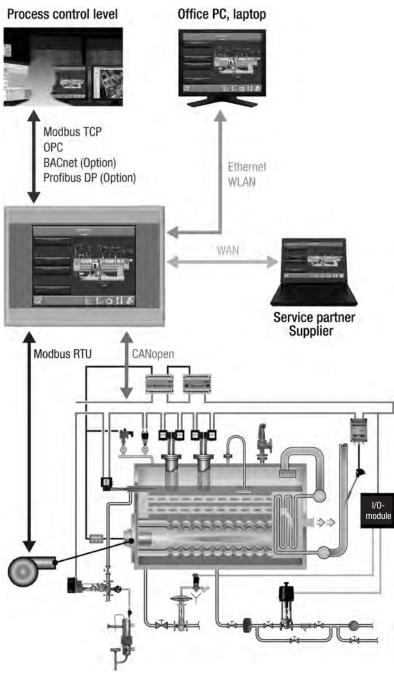
The system allows the processing of digital and analogue signals, and the setting of alarm and switching thresholds. These signals can be switched directly on the regulator or further processed by the logic and calculation functions, for example. Next, they are transmitted once again via a digital or analogue output (IPO model).

A great variety of switch-specific tasks can therefore be accomplished with these signals. This reduces the control cabinet layout to a minimum. The interfaces also provide the option of retrieving data from various burner controls (Lamtec, Siemens/Landis & Staefa) and incorporating these in the open/closed-loop control and display functions.

Likewise, there is the option of forwarding all operating data via Ethernet to service partners for remote support or to central control systems, or to configure them from here.

Example regulators

- Continuous regulators
- Continuous pump regulators (FU)
- 3-position stepping regulators
- 2-position valve/pump regulators
- 3-component regulators
- Automatic intermittent blowdown control with pulse repetition
- Metering regulators


Depending on the control loop, regulators can feature the following:

- P, PI or PID characteristic
- Deadzone
- Soft start
- Automatic runtime-dependent pump switchover
- Preset operating positions

SPECTOR control II

Function

10,4"
Х
X
4
22x
X
Х
Х
Х
X
5
10
5
5

Calculations (e.g. for set points)	10
Logic operations (e.g. for enabling the regulator)	20
Step sequences (e.g. for burner soft start)	5
Control loops	12
Trend-based regulator optimisation (12 x 4 > actual, set point, positioning value, position)	Х
Digital inputs/outputs	40
Analogue inputs/outputs	20
CAN sensors	30
Fault log incl. freely configurable collective fault signal and initial value signal	Х
Alarm history	1024
Communication via Modbus TCP, OPC, Profibus (optional), BACnet (optional)	Х
SC II mutual data exchange via Modbus TCP master/slave	3
Option of remote control via standard PC, Android or IOS Remote Client	Χ

The SPECTORmodule Touch series is based on extensive experience gained over more than 30 years and designed for evaluating and optimizing established systems and their integral components.

The level controller NRR 2-5. offers a wide range of standard applications and features some additional extras that allow design engineers and operators to find the optimum system that meets their specific requirements.

Basics of SPECTOR*module*

Newly developed equipment

The name **SPECTOR***module* stands for advanced and future-oriented system solutions, tailored to the needs and requirements of our customers. This innovative new product family combines modularity with exceptional functionality and sets new standards in various areas and sectors.

In addition to the self-monitoring and routine testing ("SMART") MIN/MAX water level limiters with EU and TÜV approval and certified functional safety SIL 3 we can now offer a safety temperature monitor/limiter that provides the same safety level.

When it comes to safety don't take any changes.

As you can see in the following table, there are two versions of the SPECTORmodule product family:

- SPECTOR module offers all essential functions and provides significant benefits over the old conventional equipment.
- SPECTOR module Touch boasts user-friendly functions which are based on the highly advanced features of the field-proven SPECTOR connect product range. This system offers a host of benefits and sets the trend for technological progress.

Many of the advantages offered by the new product family are listed as follows. On the next page you will also find a synopsis of the old/new equipment and their respective functions and benefits.

SPECTOR *module*

- Compact design reduces installation work
- Easily accessible connecting terminals
- Supply voltage 24 V DC, which means that the equipment works independently of the national supply network
- Easy operation via rotary knob/pushbutton ensures fast setup and installation
- A 7-segment numeric display provides information on the latest readings and messages

SPECTOR module Touch

- Operator control level separated from power switchgear, which means that no elaborate wiring in control cabinet is required
- The URB 55 can show both the level controller and conductivity controller simultaneously
- User-friendly and language-independent operation thanks to intuitive colour touch screen

□ Level:

- Intuitive operation via touch screen operator panel with visual display of actual value, setpoint and value of manipulated variable
- Trend line for identifying potential optimisation measures
- PI control actionOptional:
 - Three-component control

□ Conductivity:

- Intuitive operation via touch screen operator panel with visual display of actual value, setpoint and value of manipulated variable
- Prototype approval in acc. with WÜ 100 (VDTÜV Bulletin "Water Monitoring Equipment 100")
- Integrated flushing pulse for reducing manual maintenance
- Integrated, programmed intermittent blowdown control means no separate module is required for actuating the blowdown valve
- Interlocking input for preventing the simultaneous operation of two or more intermittent blowdown valves connected to one blowdown receiver

This new product family supersedes all old analogue control equipment.

When designing the new **SPECTOR***module* product range we made sure that the new equipment will also work with existing sensors.

Description

Functional Safety

Since the international standards IEC 61508 and IEC 61511 for functional safety came into effect there has been an ever-increasing demand for analyzing equipment and process instruments that meet the requirements according to the SIL (Safety Integrity Level) classification. The European directives EN 12952 and 12953 demand that a hazard analysis shall be carried out for each limiting device function and appropriate levels of functional safety be implemented.

Note 1 states: "Typical Safety Integrity Level (SIL) requirements for boiler protective systems are not less than 2".

Functional safety is part of the overall safety of a system that depends on the correct functioning of safety-related (sub)systems and external equipment for risk reduction.

This means that functional safety covers only one aspect of the overall safety. Other issues such as electrical safety, fire and radiation protection etc. do not fall within the scope of functional safety.

In modern systems electronic and, in particular, programmable systems perform safety functions to an ever increasing extent. As a consequence it is of utmost importance to assure the correct functioning of complex programmable systems. It is therefore essential to establish suitable methods for preventing systematic faults (usually due to human error committed during the specification and implementation phase) and for controlling failures, abnormalities and loss of function (usually physical phenomena). In this context the term "safety integrity of the protective or safety function" is used.

The European standard IEC 61508 "Functional safety of electrical/electronic/ programmable electronic safety-related systems" defines procedures, techniques, measures etc. for the functional safety of E/E/PE systems.

Water-level limiter NRG 1.-50 / NRS 1-50

Application and Purpose

The level electrode NRG 1.-50 in conjunction with level switch NRS 1-50 is designed as self-monitoring water level limiter with routine testing ("SMART") acc. to the European Standards EN 12952 and EN 12953. The equipment combination detects the minimum admissible level and serves as low level limiter in steam boilers and (pressurized) hot-water installations. According to the EN body of rules two SMART water level limiters are required. The system is SIL 3 certified in accordance with IEC 61508.

The level electrode NRG 1.-50 can be combined with the following GESTRA systems:

- NRG 26-21 / NRGT 26-2 / NRR 2-52 / -53 (modulating level control)
- NRG 26-21 / NRGT 26-2 / NRR 2-50 / -51 (modulating level control)
- NRG 26-21 / NRGT 26-2 / NRS 2-50 (on-off level control)
- NRG 16-52 / NRS 1-54 (on-off level control)
- NRG 16-4 / NRS 1-52 (high-level limiter)
- NRG 16-51 / NRS 1-51 (self-monitoring high-level limiter)
- NRG 16-52 / NRS 1-56 (universal on-off control)

The level electrode NRG 17-50 can be combined with the following GESTRA systems:

■ NRG 17-51/NRS 1-51 (high-level limiter)

The level electrode NRG 19-50 can be combined with the following GESTRA systems:

■ NRG 19-51/NRS 1-51 (high-level limiter)

Combination of water-level limiter and controller NRG 16-36 / NRS 1-50 / NRS 1-54

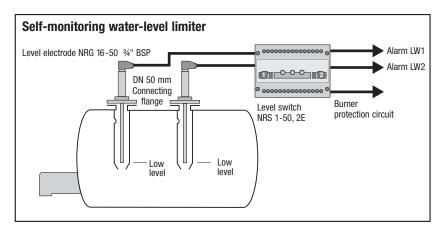
Application and Purpose

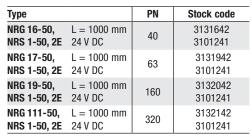
The level electrode NRG 16-36 is a combination of a water level controller and a self-monitoring water level limiter with routine testing ("SMART") acc. to the European Standards EN 12952 and EN 12953. In conjunction with the on-off level controller NRS 1-54 the equipment detects the maximum water level ("High level limiter") and controls the level in the boiler. In conjunction with the level switch NRS 1-50 the equipment detects and limits the minimum water level. The equipment combination is used in steam boilers and (pressurized) hot-water installations.

Design NRS 1-50

Plastic case with freely accessible terminals, for installation in control cabinets. The equipment can be snapped onto a 35 mm support rail. Field enclosure for one or more units available on request.

The system is certified to SIL 3.


Design NRS 1-54


Plastic case for installation in control cabinet. The equipment can be snapped onto a 35 mm support rail. Field enclosure for one or more units available on request.

Technical Data

Туре	Pressure rating	End connection	Service pressure [bar g] / Saturated steam temperature	Lengths supplied [mm]	Ambient temperature [°C]
NRG 16-50	PN 40	3/4"	32 / 238	500 - 3000	70
NRG 16-36	PN 40	1½"	32 / 238	1000 – 1500	70
NRG 17-50	PN 63	3/4"	60 / 275	500 - 3000	70
NRG 19-50	PN 160	3/4"	100 / 311	500 - 3000	70
NRG 111-50	PN 320	1"	183 / 357	500 - 3000	70

Type approval TÜV SWB xx-422

SIL 3

Optional: NRS 1-50

Special voltage: 100..240 V, 47..62 HZ

Self-monitoring water-level limiter, on-off control and high-level alarm		
Combination electrode NRG 16-36 11/2" BSP		
DN 50 mm Connecting flange High-level alarm (pump 0FF) Pump 0N/0FF Level control Low level		

Туре		PN	Stock code
NRG 16-36,	L = 1000 mm		3581047
NRS 1-50, 1E	24 V DC	40	3101141
NRS 1-54	24 V DC		3011441

Type approval NRS 1-50 TÜV SWB xx-422 SIL 3 NRS 1-54 TÜV WB/WR 15-424

Optional: NRS 1-50

Special voltage:100..240 V, 47..62 HZ

.50

High-Level Alarms

Description "Conventional Design" NRG 16-4 / NRS 1-52

Application and Purpose

Use in combination with level switch NRS 1-52 for water-level limiting (high-level alarm) in electrically conductive liquids. The austenitic version is particularly suited for aggressive fluids. For vessels and steam boilers up to PN 40 with level switch in accordance with EN 12953 (boiler operation without constant supervision).

Sensing unit for high-level alarm.

Design

The level electrode NRG 16-4 is available with screwed connection 3/8"

Material: 1.4571

The electrodes are supplied in different lengths. For switching levels between these dimensions the electrode tip can be cut to length as required. Wiring to the electrode is effected by a four-pole connector.

"Self-Monitoring" NRG 1.-51 / NRS 1-51

Application and Purpose

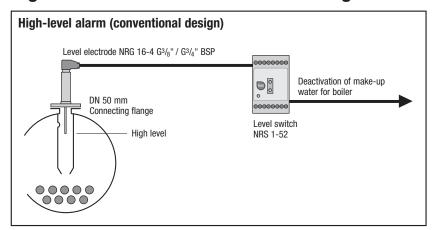
Use in combination with level switch NRS 1-51 as self-monitoring high-level alarm with periodic self-checking according to EN 12953 for high-water level detection/ limiting (high-level alarm) in steam and pressurized hot-water boilers.

Design

The high-level limiting system comprises level electrode NRG 16-51, NRG 17-51 or NRG 19-51 and level switch NRS 1-51.

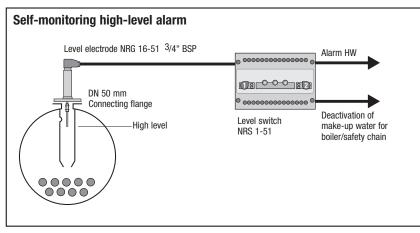
The system is certified to SIL 3.

The level electrodes NRG 16-51, NRG 17-51 and NRG 19-51 consist of a measuring electrode fitted in a body. The electrode is insulated by special insulating seals.


The pressure-tight connection of the electrode is effected coaxially with a contact ring and a stud. A system of compression springs in the electrode body ensures sufficient sealing forces at the insulating seals, even if temperatures vary. The stud is insulated by a PTFE foil. Contact ring and body are connected to the four-pole connector base by PTFE insulated wires. The level electrode is available in various lengths up to 1500 mm. Observe mounting instructions (see examples of installation). The system (electrode + level switch) complies with the regulations concerning safety circuits in accordance with DIN EN 50156-1 / VDE 0116.

Technical Data

Туре	Pressure rating	End connection	Service pressure [bar g] / Saturated steam temperature	Lengths supplied [mm]	Ambient temperature [°C]
NRG 16-4	PN 40	3/8" / 3/4"	32 / 238	500 – 1500	70
NRG 16-51	PN 40	3/4"	32 / 238	500 – 1500	70
NRG 17-51	PN 63	3/4"	46 / 260	500 – 1500	70
NRG 19-51	PN 160	3/4"	100 / 311	500 - 1500	70
NRG 111-51	PN 320	1"	183 / 357	500 – 1500	70



High-Level Alarms – Conventional Design

Туре		PN	Stock code
NRG 16-4,	L = 1000 mm	40	3441241
NRS 1-52	24 V DC	40	3011241

Type approval NRS 1-52 TÜV WB/WR xx-424

Туре		PN	Stock code
NRG 16-51,	L = 500 mm	40	3132241
NRS 1-51	24 V DC		3101541
NRG 17-51,	L = 500 mm	63	3132341
NRS 1-51	24 V DC		3101541
NRG 19-51,	L = 500 mm	160	3132441
NRS 1-51	24 V DC		3101541
NRG 111-51,	L = 500 mm	320	3132541
NRS 1-51	24 V DC		3101541

Type approval TÜV SHWS xx-423 SIL 3

Optional: NRS 1-51

Special voltage: 100..240 V, 47..62 HZ

.50

Description

Level control NRG 26-21/NRGT 26-2/ NRR 2-52/-53

This modulating level control system comprises the level electrode NRG 26-.../ NRGT 26-2 with universal operating unit (URB 55) and the level controller NRR 2-52 / -53.

The level-dependent actual value sensed by the electrode is continuously compared by the controller with the adjusted setpoint. Any deviation is immediately detected and a signal is transferred to the motorized feedwater control valve in order to regulate the flowrate accordingly.

The level controller is a PI controller with manual control. The equipment features additional functions such as high level alarm, first low level alarm ("LoLo") and an actual value output for remote indication of the water level.

The switchpoints are adjustable within the whole measuring range of the level electrode.

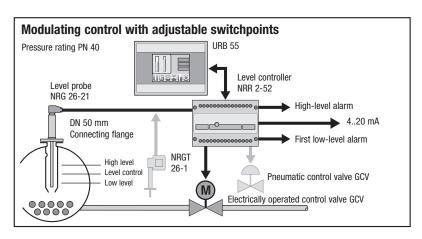
The NRR 2-52 works as three-position stepping controller, the NRR 2-53 as continuous controller.

Level control NRG 26-21/NRGT 26-2 / NRS 2-51

This water level controller is a combination of a level electrode NRGT 26-... and a level switch NRS 2-51.

The equipment can also detect and signal high level and first low level.

Remote indication of the water level is possible if the 4-20 mA output and the LED bargraph display are used.


The advantage of this switching controller lies in customized switchpoints which can be adjusted during operation and the simultaneous use of several control units.

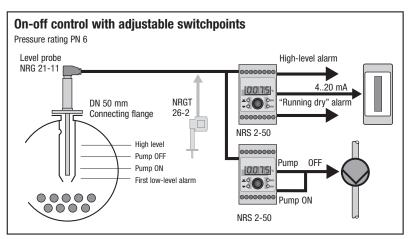
Level control 706 / NRR 2-52 / -53

Used in conjunction with controller type NRR for modulating water level control (pressure range > PN 40).

Can also be used as combination electrode together with limiters. The 706 is a radar-based level transducer. The reflexion time is a function of the level and will be transformed into a 4...20 mA standard output signal by the measuring transducer.

Туре		PN	Stock code
NRG 26-21	L = 1000 mm	40	3452147
NRGT 26-2	24 V DC, 4-20 mA L = 1000 mm	40	3486047
NRR 2-52	24 V DC, 4-20 mA, 3-posit. stepping, MIN, MAX	URB 55	3031241
NRR 2-53	24 V DC, 4-20 mA, continuous, MIN, MAX	URB 55	3031341

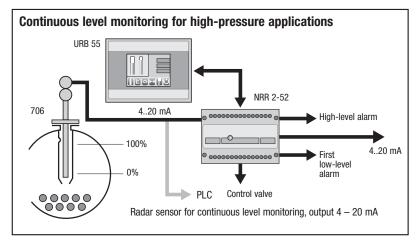
Type approval TÜV WR xx-427


Option:

3-element control (level, steam & water flowrate)

.30

Control valve with isolating bypass valve, strainer, non-return valve and feedback potentiometer
Pressure rating PN 40
Control valve GCV GAV GAV GAV GAV GAV GAV GAV


Equipment combination	Boiler capacity t/h	DN
4 x GAV 36,	< 2.5	20
Control valve GCV,	< 8.0	40
GSF, RK	< 16.0	50
230 V, 50 Hz	< 28.0	65

Equipment combination		Stock code
NRG 21-11	H = 1000 mm	3421247
NRS 2-50, 4-20 mA	24 V DC	302104157
LED analogue display		1504196

Type approval TÜV WR xx-425

High-Pressure Level Control

Туре	PN	Design	Measuring range
706	100	DN 50	600
24 V DC		DIN 2696	800
		Form E	1000
	160	DN 50	600
		DIN	800
		Form E	1000
		•	•

Approval LRS

SPECTOR*compact*

Where formerly two devices were required, all you need now is just a single Spector compact. As a combined level electrode and controller, it presents the economical alternative for monitoring liquid levels in small installations and steam boilers.

Since the entire electronic control unit is located within the terminal box, the transmission path is short and reliability is higher than with comparable systems.

System Description NRGS 1...-1

The compact system NRGS 11-1 or NRGS 16-1 works according to the conductivity measurement principle. With the NRGS 1...-1 a maximum of **four** levels can be signalled in conductive liquids:

High-level alarm, first low-level alarm, pump on, pump off, with one switchpoint each.

The NRGS 1...-1 has a level switch integrated in the electrode case for the control of all functions. An external switching device is **not** required.

System Description NRGS 1...-2

The compact system NRGS 11-2, NRGS 16-2 works according to the conductivity measurement principle. With the NRGS 1...-2 a maximum of **three** levels can be signalled in conductive liquids:

■ Low-level alarm, pump on, pump off, with one normally open contact.

The NRGS 1...-2 has a level switch integrated in the electrode case for the control of all functions. An external switching device is **not** required.

The NRGS 1...-2 has two electrode tips for the detection of low-water level. The low-level alarm is signalled via two separate switching channels.

Features and Benefits SPECTOR*compact*

- Patented temperature barrier in cylindrical body above electrode flange
- Terminal box equipped with excess temperature fuse (102 °C)
- Level electrode and controller in one unit
- Optimum system adaptation thanks to modular design
- No mounting of component parts in control cabinet
 - No space requirements
 - No installation
 - No wiring
 - Easy planning
- No special cable required for wiring sensing unit to control cabinet

- Simplified logistics
 - Only one item of equipment has to be ordered and checked upon receipt
 - Reduced inventory requirements and simplified stocking
 - No onerous assignment procedures of individual component parts to mechanical engineering dept. (boiler) and measurement and control engineering dept. (control cabinet)
- Interchanges with old float-operated systems since they have their output contacts also integrated in the terminal box.

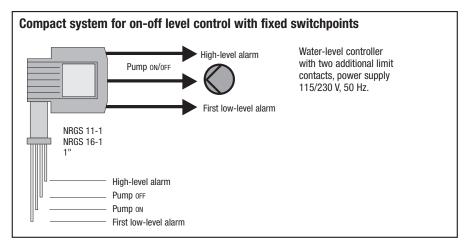
System Description NRGT 26-2

The compact system NRGT 26-2 works according to the capacitance measurement principle. The NRGT 26-2 is used for signalling different levels in conductive and insulating liquids.

Modulating control ensures that the liquid level is always within the predefined measuring range of the electrode.

The NRGT 26-2 has a level transmitter integrated in the electrode case which produces a standard analogue output of 4-20 mA. An external switching device is **not** required.

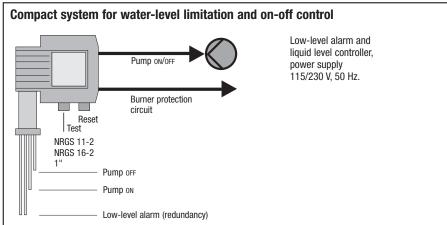
Pump Control Units


Standard features	NRSP 1-51	NRSP 1-52	NRSP 2-51	NRSP 2-52
Pump protection against running dry	•	•	•	•
Pump protection against running dry and high-level alarm			•	•
Time-dependent pump switching device		•		•
Switching-on of stand-by pump				•
Single malfunction alarm			•	•
Collective malfunction alarm (visible)	•	•	•	•
Volt-free contacts	•	•	•	•
Actual value output 4-20 mA			•	•
Required sensor	NRG 152	NRG 152	NRG 21	NRG 21

NRGS 1.-11 / NRSP 1-5. = fixed switchpoints NRG 2.-.1 / NRSP 2-5. = variably adjustable switchpoints

Individual control systems

for steam regenerators, desuperheaters, etc. conventional system or freely programmable (on request)


Туре	PN	Max. length supplied	Stock code
NRGS 11-1	6	1000	3532048
		1500	3532054
NRGS 16-1	40	1000	3533048
		1500	3533054

Optional 24 V, 50..60 Hz

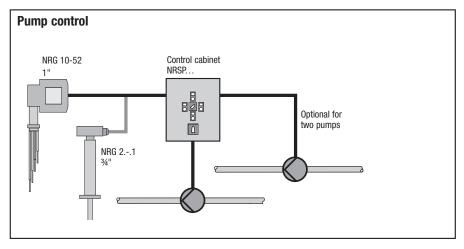
.51

Type approval TÜV WRB xx-388

Туре	PN	Max. length supplied	Stock code
NRGS 11-2	6	1000 1500	3532148 3532154
NRGS 16-2	40	1000 1500	3533148 3533154
Ontional 24 V	E0 60	Цэ	E1

Optional 24 V, 50..60 Hz

.51


Type approval TÜV WR/WB xx-388

	24 V AC/DC	
	00000000	High-level alarm
4 – 20 mA	DD751	Control valve
	NRR 2-50	Pump protection
NRGT 26-2	PLC	
100 %		Modulating level control with current output
	Hz	4 – 20 mA

Туре	PN	Max. length supplied	Stock code
NRGT 26-2	40	300	3482040
24 V DC		400	3482041
		500	3482042
		600	3482043
		700	3482044
		800	3482045
		900	3482046
		1000	3482047
		1100	3482048
		1200	3482049
		1300	3482050
		1400	3482051
		1500	3482052
		2000	3482053

Type approval TÜV WR/WB xx-388

Stock code			
3153653 / 3265140			
3153653 / 3265240			
3421247 / 3265340			
NRG 21-11 / NRSP 2-52 3421247 / 3265440			
H = 1000 mm / L = 1083 mm			

Description

Level pot for external installation of level electrodes

Stop Valve GAV

Purpose

For isolating and throttling non-corrosive and aggressive gases, steam and liquids, e. g. air, steam, gas, oil etc. in all industries.

GAV Features

- With stuffing box
- Detachable locking device for all sizes
- Optional limit switch(es)

Y-type drain valve 17/213

Additional equipment for the external installation of liquid level alarms

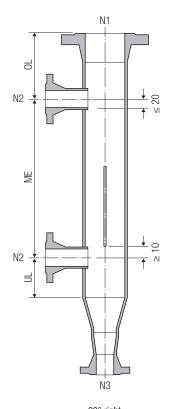
SRL 6-50

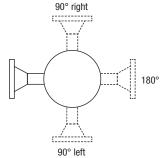
Purpose

In combination with external low-level alarms for monitoring the periodic purging of level pots or, generally, as timer for monitoring any periodic function.

Particularly suitable for steam plant operation to EN 12953.

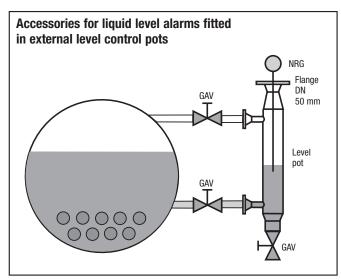
Design


All-electronic logic unit **SRL-50** for continuous monitoring, with three LEDs (stand-by, purging, switching off) with case for mounting on walls.


Operation

The monitoring equipment with Mini-PLC periodically activates a memory for a defined period of time. During this period the memory registers all functional operations, e. g. purging of the level pot. If this signal is not received within the fixed period, the plant is shut down. The plant is also shut down if the purging process lasts for more than five minutes.

Type code of level pots


Feature	Value	Designation	MF 206-1STT	118P / 214P/312G >
Component	Level pot	MF —		† † †
Design: (side connection)	1 Side connection 2 Side connection 4 Side connection 90°r 4 Side connection 90°l 4 Side connection 180° 6 Side connection 90°R+90°L	10 20 — 40 41 42 60		
Nominal pressure	PN 16 PN 40 PN 63 PN 160	4 6 7 9		
Size	88.9 114.3	1 2		
Material	Steel type P235GH High-temperature steel 16Mo3 Austenitic	S — W A		
In accordance with	AD-Bulletin TRD Others	A T — S		
Approved by	TÜV (if necessary) Works inspector Others	W S		
Connection (N 1)	3/ ₄ " BSP 1" BSP 11/ ₄ " BSP 11/ ₂ " BSP DN 50 mm DN 80 mm DN 100 mm	114 G 115 G 116 G 117 G 118 P — 120 P 121 P		
Boiler connection (N 2)	DN 15 mm DN 20 mm DN 25 mm DN 50 mm	212P 214P — 215P 218P		
Drain connection (N 3)	1/ ₂ " BSP DN 20 mm DN 25 mm	312 G — 314 P 315 P		
Side connection 3 + 4 (N 4)	DN 20 mm DN 25 mm	414 P 415 P	not require	d in this example
Side connection 5 + 6 (N 5)	DN 20 mm DN 25 mm	514 P 515 P		d in this example
Centre distance Length (top) Length (bottom)	≤ 1500	ME 1500 Spec. > Spec. >	Length (top)	ME = 1500 mm Ø 88.9 ≥ 190 mm Ø 114.3 ≥ 230 mm
			Length (bottom)	≥ 50 mm

Toma		DN	Pressure/Temp. Ratings		
Туре		PN	P _{max}	t _{max}	
MF 2061 STT GAV 36, DN 20 17/213, ¹ / ₂ " BSP	1)	40	28 bar	250°C	
MF 2071 STT GAV 136, DN 25	2)	63	51 bar	275°C	
MF 2091 STT GAV 136, DN 25	2)	160	75 bar	290°C	
MF 2091 WTT GAV 136, DN 25	2)	160	100 bar 96 bar	311°C 300°C	

- 1) Approval acc. to PED 2014/68/EU, module A1
- 2) Approval acc. to PED 2014/68/EU

Accessories for high-in an external level con		trols fitted
SPECTOR <i>module</i>	SRL 50	NRS 1-50
	• • • • • • • • • • • • • • • • • • • •	0300030 NRG
	GAV	Flange DN 50 mm
	GAV	Level
00000	<u> </u>	 GAV

Tuno		DN / DN	Pressure/Temp. Ratings	
Туре		DN / PN	P _{max}	t _{max}
MF 2061 STT GAV 36-II GAV 36-I SRL 6-50	1)	20 / 40	28 bar	250°C
MF 2071 STT GAV 136-II GAV 136-I SRL 6-50	2)	25 / 63	51 bar	275°C
MF 2091 STT GAV 136-II GAV 136-I SRL 6-50	2)	25 / 160	75 bar	290°C
MF 2091 WTT GAV 136-II GAV 136-I SRL 6-50	2)	25 / 160	100 bar 96 bar 96 bar	311°C 300°C 300°C

- 1) Approval acc. to PED 2014/68/EU, module A1 2) Approval acc. to PED 2014/68/EU

Accessories for high-integrity level controls fitted in an external level control pot SPECTOR connect
SRL 6-60 URS 60 / 61 NRG ON ON ON ON ON ON ON ON ON O
gav

Туре		PN / PN		mp. Ratings
MF 2062 STT GAV 36-II GAV 36-I SRL 6-60	1)	20 / 40	P _{max} 28 bar	t _{max} 250°C
MF 2072 STT GAV 136-II GAV 136-I SRL 6-60	2)	25 / 63	51 bar	275°C
MF 2092 STT GAV 136-II GAV 136-I SRL 6-60	2)	25 / 160	75 bar	290°C
MF 2092 WTT GAV 136-II GAV 136-I SRL 6-60	2)	25 / 160	100 bar 96 bar 96 bar	311°C 300°C 300°C

- 1) Approval acc. to PED 2014/68/EU, module A2
- ²) Approval acc. to PED 2014/68/EU

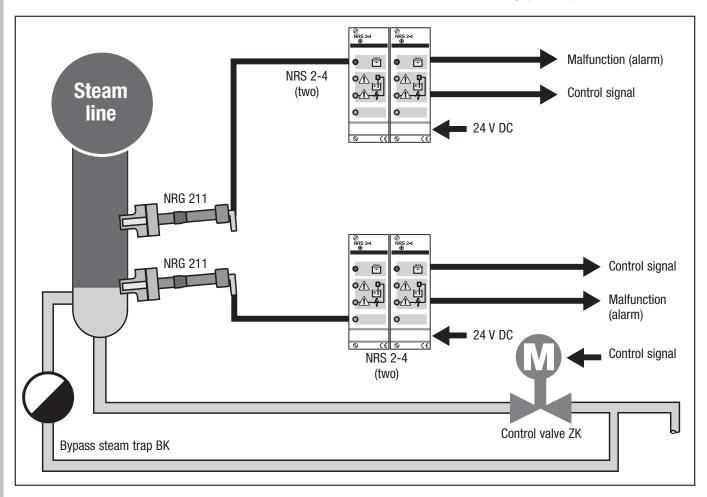
More measuring pots see page 144

Design

The probe works without any moving parts. The probe rod, which is insulated by a ceramic tube, is inserted through a hole in the probe flange such that pressure-tight sealing is ensured. The ceramic tube is closed at the lower end and covered by a protection tube. The electronic control unit is housed in the terminal box. The wiring is effected via a 6 pole connector with crimp connection.

Operation

The principle of capacitance measurement is used to sense liquid levels. The probe rod and the protection tube form a capacitor, with air or the particular liquid being the dielectric. In electrically conductive liquids the probe insulation serves as dielectric. As the level rises or falls, the capacitance of this assembly changes, is converted in the integral measuring transducer into a signal, and is then fed to the associated electronic control unit.


NRG 211

In combination with level switch NRS 2-4 for indicating high-water level at very high pressures and temperatures (up to PN 320, $550\,^{\circ}$ C). Application in draining systems of conventional power stations and high-pressure steam boilers.

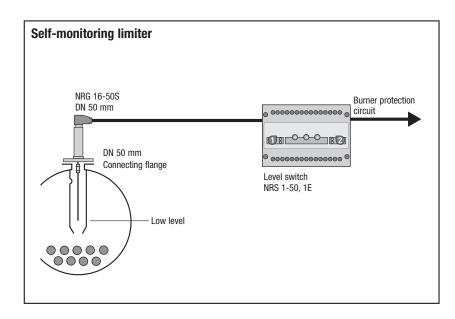
NRS 2-4

The level switch NRS 2-4 is an analogue electronic amplifier for the capacitance electrode type NRG 211.

In combination with this level electrode the unit can detect high water level. In addition, the level switch evaluates possible malfunction signals coming from the electrode and monitors the electrode supply cable and can therefore be used as part of a controlled draining system in power stations.

Туре	Material	PN		Stock code
NRG 211 *)	1.5415	320	200 bar at 450 °C 320 bar at 120 °C	350100130 ≤ DN 100 350100140 > DN 100
	1.7380		200 bar at 500 °C 320 bar at 120 °C	350100231 ≤ DN 100 350100241 > DN 100
	1.4922		230 bar at 550 °C 320 bar at 120 °C	350100332 ≤ DN 100 350100342 > DN 100
NRS 2-4				3233142

^{*)} with welding connection, nuts, bolts and seals for pipes \varnothing > DN 100 or < DN 100

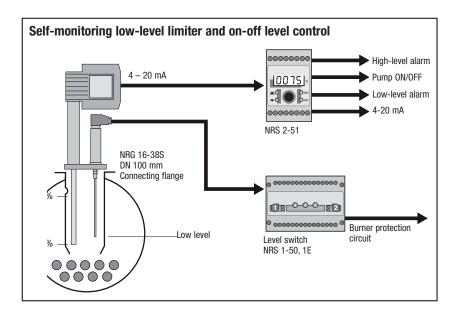

Gestra

Description

Steam boiler equipment for marine applications has to comply with the same requirements as those placed on land installations. In addition to that further demands regarding environmental conditions such as climate, vibrations etc. have to be met.

The acceptance certificates are to be issued by the classification society responsible for the ship's acceptance inspection.

For marine applications see page 104.

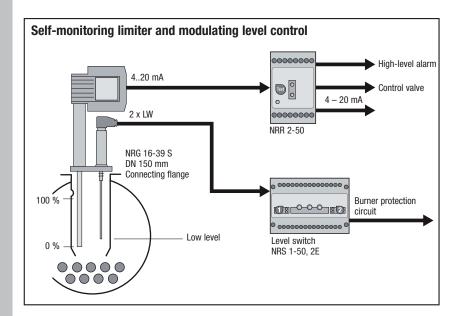


Туре		PN	Stock code
NRG 16-50S	L = 1000 mm		31317742
NRS 1-50, 1E	24 V DC, 15s	40	31011415053
NRS 1-50, 2E	24 V DC, 15s		31012415053

Optional 100 – 240 V AC

NRS 1-50, for 1 electrode 31011415053

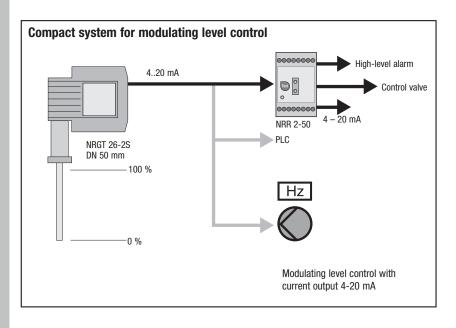
NRS 1-50, for 2 electrodes 31012415053



Туре	PN	max. length supplied	Stock code
NRG 16-38S		779	3582044.57
24 V AC/DC		884	3582045.57
	40	989	3582046.57
		1095	3582047.57
		1513	3582051.57
NRS 1-50, 1E, 24 V DC			310114153
NRS 2-51, 24 V DC			3021141

Optional NRG 16-38s, 115 V 50-60 HZ NRG 16-38s, 230 V 50-60 HZ

.56 e. g. 3582044.



Туре	PN	max. length supplied	Stock code		
NRG 16-39 S	40	779	3584044		
230 V AC		884	3584045		
		989	3584046		
		1199	3584047		
		1513	3584051		
NRS 1-50, 2E, 24 V [310124153				
NRR 2-50, 24 V DC			3031041		

Optional

NRG 16-39s, 115 V 50-60 HZ NRS 1-50, 230 V, 50-60 HZ

.56 .50.53

Туре	PN	max. length supplied	Stock code
NRGT 26-2S	40	316	3212052
24 V DC		420	3212053
		526	3212054
		631	3212055
		737	3212056
		842	3212057
		947	3212058
		1053	3212059
		1579	3212060
NRR 2-50, 24 V DC			3031041

Optional

NRGT 26-1S, 115 V 50-60 HZ


.52

NRGT 26-1S, 230 V, 50-60 HZ

e.g. 3211452.

Industrial Electronics

	Page
Temperature detection and control SPECTOR connect	132 – 133
Temperature detection and control SPECTOR module	134 – 135
Conductivity Monitoring	
Basic principles · application	136
Technical specification	
Conductivity monitoring SPECTOR <i>connect/compact</i>	
Conductivity monitoring SPECTOR <i>connect/compact</i> with automatic temperature com Conductivity control with manual or automatic temperature compensation	
SPECTOR <i>module</i>	140 – 141
Conductivity monitoring with automatic temperature compensation	
_RG 16-9 / LRS 1-7	142 – 143
Annel Handra	
Ancillaries Tee pieces, level pots and portable measuring instruments	144
tee pieces, iever pots and portable measuring instruments	144
Continuous blowdown valves	145 – 146
ntermittent programm-controlled blowdown systems	147 _ 149
Rapid-action intermittent blowdown valves	
Tapia-action intermittent blowdown valves	143 – 130
Contamination detectors for condensate and process liquids	
Detecting ingress of oil in condensate systems and marine installations	151 – 152
ngress of oil in cooling water systems digital indicator	153
Flowmeters for steam, gases and liquids	154

URS 60 / 61 Controller with Safety Function

Self-monitoring temperature limiter with periodic self-checking feature to be used in conjunction with a resistance thermometer type TRG 5-6.. and pre-amplifier TRV 5-60. The equipment operates as a safety temperature controller, or in conjunction with an external lock-out in accordance with DIN EN 50156 as a safety temperature limiter. An alarm is given as soon as the temperature exceeds a preset limit value. The TRV 5-60 features digital indicators for the actual temperature and switching-off temperature.

Examples of Installation

- Superheaters for steam boiler plants operating without constant supervision EN 12953.
- Superheater cascades with up to 4 steps
- In pressurized hot-water plants as temperature limiter for the secondary circuit in accordance with 12952/..53.
- Furnaces in accordance with DIN 30 683 up to 800 °C.
- Control systems for product heating or cooling

Technical Data of Temperature Sensor

Tumo	PN		Connections			Max.	Ambient	Lengths avail-
Туре	PN	Screwed	TRV	Welding stub	Pt 100	temperature	temperature	able L [mm]
TRG 5-63	40	1/2"	5-40	-	1	400 °C	100 °C	100 to 400
TRG 5-64	40	1/2"	5-40	-	2	400 °C	100 °C	100 to 400
Accuracy class A								
TRG 5-65	160	-	5-40	form 4	1	540 °C	100 °C	115
TRG 5-66	160	-	5-40	form 4	1	540 °C	100 °C	140
TRG 5-67	160	-	5-40	form 4	1	600 °C	100 °C	200
TRG 5-68	160	_	5-40	form 4	1	600 °C	100 °C	200

Accuracy class A/B

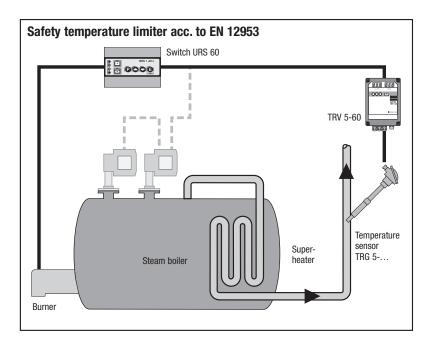
Technical Data of Temperature Pre-Amplifier

Туре	Output	Adjustment range	Auxiliary power	Version	Performance test	TÜV	EC
TRV 5-60	CANopen	650°C	24 V DC	a	annual	•	•

Technical Data of Temperature Switches / Controllers / Indicators

Tuno	Outputs		Control characteristic			Mains supply	Version			Performance test in	TÜV	EC
Туре	Switchpoint	0/4-20 mA	MIN	MAX	ΔΤ	Standard	b	C	е	acc. with DIN 3440	approval	EU
URS 60	1	-	-	-	-	230 V DC	•	_	-	annual	•	•
URS 61	1	-		_	-	230 V DC	•	-	-	annual	•	•

Designs


a = Field case

 $b = Plug\hbox{-in unit in plastic case}$

c = 19" slide-in unit

e = Case for panel mounting

Safety temperature limiter

Combination		PN	Stock code
PT 100	T < 650 °C		
TRG 5-67	L = 200 mm	160	2671822
TRG 5-68	L = 200 mm	160	2671923
TRV 5-60	24 V, DC	_	
URS 60	24 V, DC	_	
Combination		PN	Stock code
Pt100	T < 540 °C		
TRG 5-65	L = 115 mm	160	2671611
TRG 5-66	L = 140 mm	160	2671712

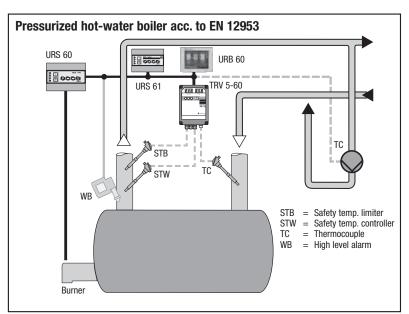
2691040

3222841

Type approval TÜV SWB/SHWS/STW (STB) xx-413 EG MUC-03-07-103881-004 DIN CERTO STW (STB) 117906 SIL 2

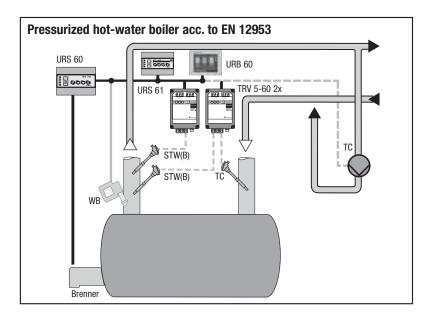
24 V, DC

24 V, DC


TRV 5-60

URS 60

Pressurized hot-water boiler


Combination		PN	Stock code
PT 100	T < 400 °C		
TRG 5-63	L = 100 mm 3x	40	2671110
TRV 5-60	24 V, DC 1x	_	2691040
NRG 16-60		40	3514041
URS 60		_	3222841
URS 61		-	3228941
URB 60		_	3382043

TÜV STW 1182 06 DIN CERTO TR/TW 118206 SIL 2

Pressurized hot-water boiler

Combination		PN	Stock code
PT 100	T < 400 °C		
TRG 5-63	L = 100 mm 3x	40	2671110
TRV 5-60	24 V, DC 2x	_	2691040
NRG 16-60		40	3514041
URS 60		_	3222841
URS 61		-	3228941
URB 60		_	3382043

TRS 5-50

Self-monitoring temperature switch with periodic self-checking feature to be used in conjunction with a resistance thermometer type TRG 5-....

The equipment operates as a safety temperature controller, or in conjunction with an external lock-out in accordance with EN 14597 as a safety temperature limiter. An alarm is given as soon as the temperature exceeds a preset limit value. Via the optional current output the temperature can be indicated externally at the same time. The system is **SIL 3** certified.

Examples of Installation

- Superheaters for steam boiler plants operating without constant supervision EN 12953.
- In pressurized hot-water plants as temperature limiter for the secondary circuit in accordance with EN 12952/..53.
- Furnaces in accordance with DIN 30 683 up to 650 °C.
- Return-temperature control acc. to EN 12953.
- Control systems for product heating or cooling.

TRS 5-52

The min./max. temperature switch TRS 5-52 in combination with temperature sensor TRG 5-63, TRG 5-64, TRG 5-65, TRG 5-66, TRG 5-66, TRG 5-67 and TRG 5-68 serves as temperature controller according to EN 14597. Application in steam boilers, pressurized hot-water plants operating without constant supervision EN 12953 as well as any other type of heat generator. The equipment raises an alarm when the preset MIN/MAX limit value is attained. Optional current output 4-20 mA for actual value indication.

Technical Data of Temperature Sensor

Туре	PN		Connections		Pt 100	Max.	Ambient	Lengths avail-	
	FIN	Screwed	TRS	Welding stub	Pt 100	temperature	temperature	able L [mm]	
TRG 5-63	40	1/2"	5-50/52	_	1	400°C	100°C	100 – 400	
TRG 5-64	40	1/2"	5-50/52	_	2	400°C	100°C	100 – 400	

Accuracy class A

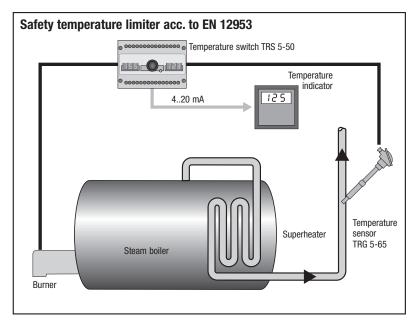
TRG 5-65	160	-	5-50/52	form 4	1	540°C	100°C	115
TRG 5-66	160	-	5-50/52	form 4	1	540°C	100°C	140
TRG 5-67	160	-	5-50/52	form 4	1	600°C	100°C	200
TRG 5-68	160	-	5-50/52	form 4	1	600°C	100°C	200

Accuracy class A/B

Technical Data of Temperature Switches / Controllers / Indicators

Tuno	Outp	outs	Contro	l charact	eristic	Mains supply	supply Version		Performance test in		Adjustable	Appr	oved
Туре	Switchpoint	4-20 mA	MIN	MAX	ΔΤ	Standard	b	C	e	acc. with DIN 3440	temp. range	TÜV	EC
TRS 5-50	1	(optional)	-	•	-	24 V DC	•	-	-	annual	0 °C - 650 °C	•	•
TRS 5-52	2	4-20 mA	•	•	-	24 V DC	•	_	_	-	0 °C - 650 °C	•	

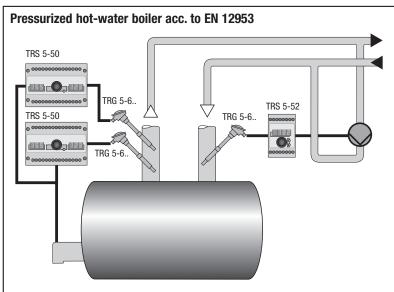
Designs


a = Field case

b = Plug-in unit in plastic case

c = 19" slide-in unit

e = Case for panel mounting


Safety temperature limiter

Equipment (combination	PN	Stock code
PT 100	T < 540 °C		
TRG 5-66	L = 140 mm	160	2671712
TRS 5-50	24 V DC	_	3061141

Type approval DIN CERTO STW/STB 1230 EG Z-IS-TAF-MUC-12-10-103881-009 SIL 3 Optional:

100-240 VAC

.50 4-20 mA (0...650 °C) .57

Return-temperature controller

Equipment of	combination	PN	Stock code
PT 100	T < 400 °C		
TRG 5-63	L = 160 mm	40	2671113
TRS 5-50	24 V DC	-	3061141
TRS 5-52	24 V DC		3061241

Type approval DIN CERTO TW 1232

Optional:

TRS 5-50, 100-240 VAC .50 4-20 mA (0...650 °C) .57

Conductivity Monitoring Basic Principles · Application

Function

All boiler water contains some dissolved solids. These impurities are constantly concentrated due to the evaporation process, i. e. the total dissolved solids (TDS) level increases. If the TDS level were to exceed the permissible maximum stipulated by the boiler manufacturer, foaming and carry-over would take place, leading to contamination of the steam distribution system. As a result, the operational reliability of the plant will be impaired, and the boiler and steam system can be badly damaged.

Effective blowdown can be provided by use of blowdown controller in conjunction with conductivity electrode and continuous blowdown valve BAE 46-211/ball valve 510.

Deposits of fine suspended solids forming scale on the heating surfaces and settling at the bottom of the boiler are the result of residual hardness or an excessive phosphate content within the boiler water. These scale formations form a heat insulating layer, which means that the heat transfer surfaces are now subject to design pressure, but at elevated temperature, which in turn can cause deformation and even an explosion. The answer to this problem is the use of continuous blowdown timer TA 5 / 10, solenoid valve 6340 and intermittent blowdown valve MPA 46 / MPA 47 / MPA 48 / MPA 110.

Application

Steam boilers	Boiler water, feedwater and condensate monitoring
District-heating plants	Condensate monitoring
Paper industry	Condensate monitoring
Pulp industry	Condensate monitoring
Catering kitchens	Condensate monitoring
Water-treatment plants	Conductivity monitoring
Dyeworks	Dyebath monitoring
Filling/bottling plants	Detection of different products
Electric boilers	Maintaining defined conductivity
Cooling towers	Continuous blowdown control
Pickling baths	Quality monitoring

Basics

Which water values must be adhered to and where can I find a specification of the demands made on boiler water monitoring through continuous and intermittent blowdown?

The requirements made on make-up, boiler and heating water are stipulated in the European Standards

EN 12952-12 (water-tube boilers) and EN 12953-10 (fire-tube boilers).

For more information refer to: VdTÜV/AGFW Bulletins

- TCh 1452: Quick-steaming unit
- TCh 1453: Steam generator ≤ 68 bar
- TCh 1466: Hot-water generator

VGB Guideline

■ VGB-R450L: Water-tube boiler

Where can I find more information on boiler water monitoring? The European Standards EN 12952-7 and EN 12953-6 (Equipment) as well as the Ordinance of Industrial Safety ("BetrSichV") and the associated Regulations for Industrial Safety TRBS 2141, part 2 will help.

Principles of Measurement

Conductivity measurement, 2-electrode system

An alternating voltage is applied to two electrode tips (polarization). The current flow is directly proportional to the specific conductivity of the fluid.

Particularly suitable for pure fluids applications up to 500 μ S/cm (e.g. steam regenerators, condensate/feedwater tanks, steam generating units > PN 40 etc.).

Conductivity measurement, 4-electrode system

The 4-electrode method is used in order to improve the quality of the measuring result and to avoid polarisation. This measuring method separates the current-carrying from the voltage-carrying measuring electrodes, which means that the measurement is performed without current and therefore free of polarisation and that dirt deposits can be compensated to a large extent. Particularly well suited for boiler water with high conductivities (e.g. industrial steam boilers up to PN 40).

Temperature compensation (T° Comp)

In plants with temperatures above 25 °C the influence of temperatures on conductivity is an important factor to be considered. Due to electrolytic dissociation (desintegration of a compound in a solution) conductivity increases considerably:

Degree of dissociation $\alpha \approx 2 - 3 \%/^{\circ}C$.

Manual temperature compensation is suitable for plants with steady service temperatures. The actual conductivity is obtained by carrying out a comparison measurement (calibration) to offset thermal errors.

Automatic temperature compensation (ATC) is ideal for plants with varying service temperatures in order to make conductivity values independent of changes in ambient temperatures. The measured and the indicated values always refer to 25 °C and are constantly compensated for changes in pressure and temperature.

Technical Data of Conductivity Electrodes

Туре	PN	Connection	Max. service pressure [bar]/ saturation temperature	Integrated temp. sensor	Max. admissible ambient temp. at terminal box	Lengths supplied [mm]	TÜV approval	EC
LRGT 16-3	40	1"	32 / 238 °C	•	70 °C	200 – 1000	•	•
LRGT 16-4	40	1"	32 / 238 °C	•	70 °C	180 – 1000	•	•
LRGT 17-3	63	1"	60 / 275 °C	•	70 °C	200 – 1000	•	•
LRG 16-60	40	1"	32 / 238 °C	•	70 °C	200 – 1000	•	•
LRG 16-61	40	1"	32 / 238 °C	•	70 °C	180 – 1000	•	•
LRG 17-60	63	1"	60 / 275 °C	•	70 °C	200 – 1000	•	•
LRG 16-4	40	3/8"	32 / 238 °C	-	70 °C	100 – 1200	•	-
LRG 16-9	40	1/2"	32 / 238 °C	•	70 °C	43	•	•

Designs

a = Field case

b = Plug-in unit in plastic case

c = 19" slide-in unit

e = Case for panel mounting

Technical Data of Electronic Control Units

Туре	Outputs		Main supply Protection		Design				Measuring range	TÜV	EC
турс	switchpoints	0/4 – 20 mA	Standard	TTOLEGUION	a	b	С	е	(recommended)	approval	
SPECTOR <i>connect</i>											
LRR 1-40 / LRG 16-40 / LRG 17-40	3	1	230 V	IP 40	-	•	-	_	0.5 to 6000 μS/cm (0.5 to 500 μS/cm)	•	•
LRR 1-40 / LRG 16-41	3	1	230 V	IP 40	_	•	-	-	100 to 10000 µS/cm	•	•
SPECTOR <i>module</i>		,			•		•				
LRS 1-50 / LRG 16-4 / LRG 16-9	2		24 VDC	IP 40	-	•	-	_	0.5 to 10000 μS/cm	•	•
LRR 1-50 / LRG 16-4 / LRG 16-9	3	1	24 VDC	IP 40	_	•	_	_	0.5 to 10000 μS/cm	•	•
LRR 1-51 / LRGT 16-3 / LRGT 17-3	3	1	24 VDC	IP 40	-	•	-	-	0.5 to 6000 μ S/cm (0.5 to 500 μ S/cm)	•	•
LRR 1-51 / LRGT 16-3	3	1	24 VDC	IP 40	_	•	-	-	50 to 6000 μS/cm	•	•
LRR 1-52 / URB 55 / LRG 16-4 / LRG 16-9	4	1	24 VDC	LRR IP 40 URB 55 IP 65	-	•	-	•	0.5 to 10000 µS/cm	•	•
LRR 1-53 / URB 55/ LRGT 16-1 / LRGT 17-1	4	1	24 VDC	LRR IP 40 URB 55 IP 65	-	•	-	•	0.5 to 6000 μ S/cm (0.5 to 500 μ S/cm)	•	•
LRR 1-53 / URB 55 / LRGT 16-2	4	1	24 VDC	LRR IP 40 URB 55 IP 65	-	•	-	•	50 to 10000 μS/cm	•	•
SPECTOR compact											
LRGT 16-1	-	1	24 VDC	IP 65	-	-	-	-	0.5 to 6000 μS/cm (0.5 to 500 μS/cm)	•	•
LRGT 16-2	-	1	24 VDC	IP 65	-	_	-	-	50 to 10000 μS/cm	•	•
LRGT 17-1	-	1	24 VDC	IP 65	-	-	-	-	0.5 to 6000 μS/cm (0.5 to 500 μS/cm)	•	•

LRG 16-60 / 17-60

The conductivity electrode LRG 16-60 / 17-60 works acc. to the conductivity measurement principle.

LRG 16-61

The conductivity electrode LRG 16-61 features 4 electrodes working according to the conductivity measurement principle.

The LRG 16-6x / 17-60 is designed for signalling the TDS value (conductivity) in electrically conductive liquids:

■ Conductivity permanently within predefined control range of the electrode.

The LRG 16-6x / 17-60 is to be used in conjunction with the conductivity controller LRR 1-60 or further system components. The conductivity data are transferred to the conductivity controller or other system components via CAN data bus.

LRR 1-60

The conductivity controller LRR 1-60 is used in conjunction with conductivity electrode LRG 16-60 / 17-60 for conductivity monitoring and control. The conductivity controller has the following functions:

- Two limits with one switchpoint each (high-level alarm, low-level alarm) or high-level alarm and intermittent blowdown program control.
- Three-position control with predefined proportional band.
- Conductivity maintained within the control band defined by preset limits.

The LRR 1-60 features an output for a standard signal 4-20 mA. The conductivity data are transferred from the electrode LRG 16-60/LRG 17-60 to the conductivity controller via CAN data bus.

URS 60

The safety controller in conjunction with the conductivity electrode LRG 16-6x/17-60 forms a conductivity measuring and limiting system. The conductivity limiter has the following functions:

 Conductivity limiters switch off the heating when the max. conductivity limit is exceeded

URB see page 112

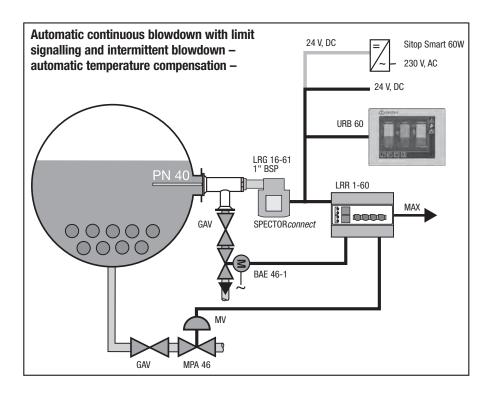
LRGT 16-3 / LRGT 17-3

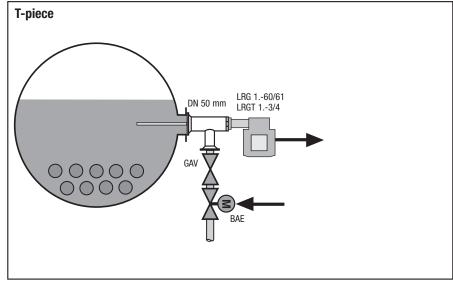
The compact system LRGT 16-3 / 17-3 features 2 electrodes working acc. to the conductivity measurement principle.

LRGT 16-4

The compact system LRGT 16-4 features 4 electrodes working acc. to the conductivity measurement principle.

The LRGT 16-x / 17-3 is designed for signalling the TDS value (conductivity) in electrically conductive liquids:


■ Conductivity permanently within predefined control range of the electrode.


The LRGT 16-x / 17-3 has a conductivity transmitter integrated in the terminal box for producing a standard signal 4-20 mA.

Sitop

Power supply unit Sitop PSU/Smart serves as a 24 V DC power supply unit for the compact system LRGT 16-3 / LRGT 16-4 / LRGT 17-3.

SPECTOR connect	PN	Stock code
LRG 16-61, 600 mm	40	3791547
Tee piece 50/251)	40	3761502
LRR 1-60		3816041
URB 60		3386043
BAE 46-1		
< DN 15 mm	40	3891200
< DN 20 mm	40	3891400
< DN 25 mm	40	3891500
< DN 40 mm	40	3891700
< DN 50 mm	40	3891800
MPA 46		
< 6 t/h DN 25 mm	40	3661500
< 28 t/h DN 40 mm	40	3661700
Solenoid valve 6340 C 1/4" BSP		
Strainer	40	440267
GSF 335 1/2" BSP	40	440207
Reducer ½" BSP – ¼" BSP		
LRG 17-60, 600 mm	63	3792047
Tee piece 50/251)		1502890
LRR 1-60		3816041
URB 60		3386043
BAE 47		
< DN 25 mm	63	3901500
< DN 40 mm	63	3901700
< DN 50 mm	63	3901800
MPA 47		
< 6 t/h DN 25 mm	63	3671500
< 28 t/h DN 40 mm	63	3671700
Solenoid valve 6340 C ¼" BSP Strainer GSF 335 ½" BSP Reducer ½" BSP – ¼" BSP		440267

1) Approval in acc. with PED 2014/68/EU, module A

Type approval: TÜV WÜL xx-007 EG BAF-MUC-12-05-103881-003

(UL) LISTED

SPECTOR <i>compact</i>	PN	Stock code
LRGT 16-4, 380 mm	40	3851545
Safety power supply unit PSU 100 C		3373141
LRGT 17-3 , 400 mm	63	3852045
Safety power supply unit PSU 100 C		3373141

TÜV and EC type approval only in combination with LRR 1-5.

T-piece connector

Approved in acc. with PED 2014/68/EU PN 40

Approved in acc. with PED 2014/68/EU PN 63

 \mathbf{m}

Manual Compensation

LRG 16-4

Application and Purpose

The LRG 16-4 in conjunction with conductivity switch LRS or conductivity controller LRR detects the electrical conductivity of process or boiler water.

Automatic Compensation

TRG 5-6.

Application and Purpose

The TRG 5-6.. continuously detects the temperature and compensates for any temperature influence on the conductivity reading.

LRG 16-9

Application and Purpose

The LRG 16-9 detects the electrical conductivity and, by means of the integrated resistance thermometer Pt 100, the temperature of feedwater, condensate, process and boiler water.

LRS 1-50

Application and Purpose

The LRS 1-50 is a compact-design limit switch for signaling MIN and MAX limits and for on/off continuous blowdown control (valve OPEN/CLOSED) with MAX limit contact for automatic boiler blowdown in steam boilers, evaporators, pure steam generators etc. A separate resistance thermometer Pt 100 can be connected to the equipment to provide automatic temperature compensation.

LRR 1-50

Application and Purpose

The LRR 1-50 is a compact-design continuous blowdown controller for automatic 3-position continuous blowdown control (valve OPEN/OPERATION/CLOSED) with a MAX limit contact for automatic boiler blowdown in steam boilers, evaporators, pure steam generators etc. A separate resistance thermometer Pt 100 can be connected to the equipment to provide automatic temperature compensation.

Design of LRS 1-50 / LRR 1-50/51

Plastic enclosure for installation in control cabinet, with removable terminal strip. Installation via 35 mm standard rail.

LRR 1-52

Application and Purpose

The LRR 1-52 is a continuous blowdown controller for automatic 3-position continuous blowdown control (valve OPEN/OPERATION/ CLOSED) with MIN and MAX limit contacts for automatic boiler blowdown in steam boilers, evaporators, pure steam generators etc. The associated operating & display unit URB is mounted in the front panel and is used for setting the parameters in the controller and viewing numerical indication and bar graphs of actual value, setpoint, value of manipulated variable and trend graphs.

Design

The continuous blowdown controller LRR is inside a plastic enclosure for installation in control cabinet and provided with a removable terminal strip. Installation via 35 mm standard rail. The operating & display unit URB is mounted in the front panel of the control cabinet.

Automatic temperature compensation

LRGT 16-3 / 17-3

Application and Purpose

The compact system LRGT 16-3 / 17-3 works according to the conductometric measuring method using two measuring electrodes and features an in-built resistance thermometer Pt 1000.

LRGT 16-4

Application and Purpose

The compact system LRGT 16-4 works according to the conductometric measuring method using four measuring electrodes. Any effects caused by polarisation or contamination are almost entirely compensated for. In addition, the equipment features an integrated resistance thermometer Pt 1000.

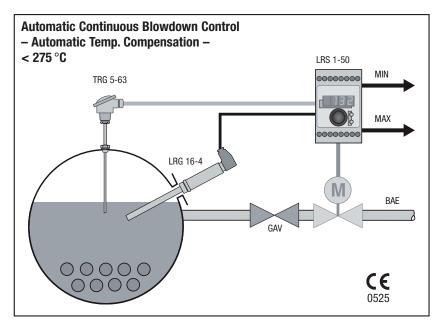
Both systems LRGT 1.-3 and LRGT 16-4 have an in-built conductivity transmitter that generates a standardized signal 4 – 20 mA.

LRR 1-51

Application and Purpose

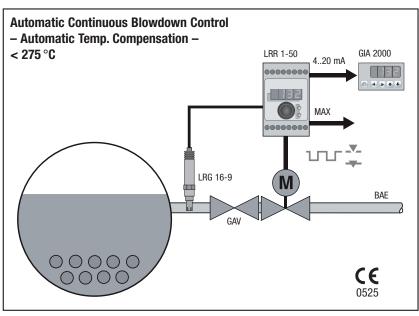
The LRR 1-51 is a compact-design continuous blowdown controller for automatic 3-position blowdown control (valve OPEN/OPERATION/CLOSED) with MIN and MAX limit contacts for automatic boiler blowdown in steam boilers, evaporators, pure steam generators etc. The compact system LRGT 16-3/4 or LRGT 17-3 provides automatic temperature compensation.

LRR 1-53


Application and Purpose

The LRR 1-53 is a continuous blowdown controller for automatic 3-position blowdown control (valve OPEN/OPERATION/CLOSED) with MIN and MAX limit contacts for automatic boiler blowdown in steam boilers, evaporators, pure steam generators etc. The associated operating & display unit URB is mounted in the front panel and used for setting the parameters in the controller and viewing the numerical values and bar graphs of actual value, setpoint, value of manipulated variable and trend graphs.

Design


The continuous blowdown controller LRR is inside a plastic enclosure for installation in control cabinet and provided with a removable terminal strip. Installation via 35 mm standard rail. The operating & display unit URB is mounted in the front panel of the control cabinet.

System co	mponents	PN	Stock code	
LRG 16-4 400 mm, 3/8" TRG 5-63 160 mm, 1/2" LRS 1-50 24 V DC		40	3772245	
		40	2671113	
			3041041	
BAE 46-3	DN 20, 230 V AC	40	3891403	

Type approval: TÜV WÜL xx-018 EG Z-IS-TAF-MUC 12 08 103881 007

System con	nponents	PN	Stock code	
LRG 16-4 400 mm, ³ / ₈ "		40	3772245	
TRG 5-63	160 mm, ½"	40	2671113	
LRG 16-9	incl. Pt100	40	3771839	
Connecting Jack/pin	cable 30 m		1502565	
LRR 1-50	24 V DC		3041541	
BAE 46-3 DN 20, 230 V AC BAE 46-3 DN 20, 230 V AC		40	3891403	
		40 3891403		
System con	nponents	PN	Stock code	
LRGT 16-3	400 mm, 1"	40	3851045	
LRGT 17-3	400 mm, 1"	63	3852045	
LRGT 16-4	380 mm, 1"	40	3851545	
LRR 1-51	24 V DC		3042141	
BAE 46-3	DN 20, 230 V AC	40	3891403	
BAE 47	DN 25, 230 V AC	63	3901500	

Type approval: TÜV WÜL xx-017 EG Z-IS-TAF-MUC 12 08 103881 008

Automatic Continuous Blowdown Control - Automatic Temp. Compensation - incl. Intermittent Blowdown Control
URB 55 LRGT 16-2 24 V DC 420 mA BAE 46 Or BAE 46-3

System con	nponents	PN	Stock code			
LRG 16-4	400 mm, ³ / ₈ "	40	3772245			
TRG 5-63	160 mm, ½"	40	2671113			
LRR 1-52	24 V DC		3042241			
BAE 46-3	DN 20, 230 V AC	40	3891403			
BAE 46	DN 40, 230 V AC	40	3891700			
System con	nponents	PN	Stock code			
LRGT 16-1	400 mm, 1"	40	3851045			
LRGT 17-1	400 mm, 1"	63	3852045			
LRGT 16-2	380 mm, 1"	40	3851545			
LRR 1-53	24 V DC		3042341			
BAE 46-3 DN 20, 230 V AC		40	3891403			
BAE 46	DN 40, 230 V AC	40	3891700			
BAE 47	DN 25, 230 V AC	63	3901500			

Type approval: TÜV WÜL xx-017 EG Z-IS-TAF-MUC 12 08 103881 008

If an independent valve position indicator is required, please choose a BAE actuator with feedback potentiometer and add suffix -1 to the type designation.

~

Automatic Temp. Compensation LRG 16-9

Purpose and Application

The LRG 16-9 in conjunction with LRS 1-7a monitors the electrical conductivity as well as the temperature of process, condensate, boiler and feed water thanks to the integrated resistance thermometer. The system is used for limit monitoring and/or automatic continuous boiler blowdown.

Design

The conductivity electrode LRG 16-9 works with 2 electrodes and uses the electrical conductivity of water for measurement. The integrated PT 100 measures the temperature, thereby enabling automatic temperature compensation.

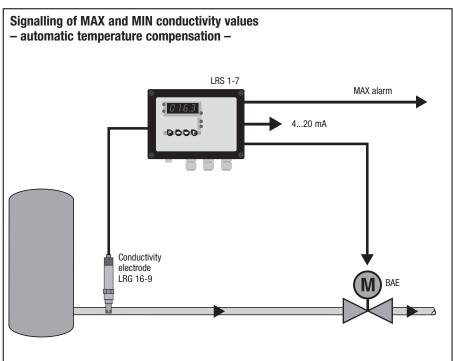
LRS 1-7

Purpose and Application

Used in conjunction with conductivity electrode LRG 16-9 for automatically controlled continuous boiler blowdown and/or limit monitoring in order to increase the economic viability and safety of the plant. Controlled boiler blowdown with temperature compensated indication of the electrical conductivity (TDS control). Application in steam boilers, evaporators, steam regenerators, condensate liners etc.

Design

Plastic casing for wall mounting with indicators and adjustors behind clear lid.



Sample valve unit > 275 °	Stock code
LRG 16-9	3771839
Connecting cable male / female 5 m	1502563
PK-250 PE2A	
LRS 1-7	3781640
BAE 210 DN 25 FI.	393150001

GAV see page 89 - 90

Type approval: TÜV WÜL xx-014

- Automatic temperature compensation

Equipment		PN	Stock code
LRG 16-9		40	3771839
Connecting cabl male / female	e 5 m		1502563
LRS 1-7			3781640

Type approval: TÜV WÜL xx-014

Optional LRS 1-7a Special voltage 24 V AC

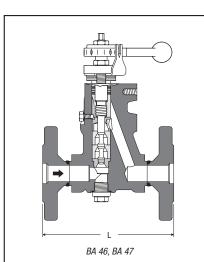
.51

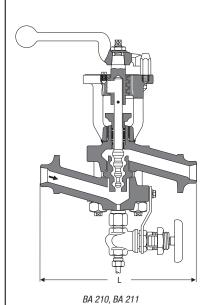
_

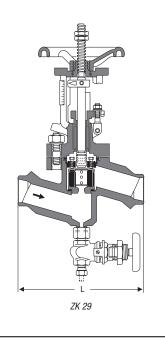
Tee Pieces for Conductivity Electrodes

		Connections DN ²)	Length L approx.	Stock code
DN 15 – 40 mm L 3/8"		15 / 15	118	1506435
Boiler 3/8"	To suit electrode LRG 16-4	20 / 20	128	1506436
DN 15 – 40 mm	Material: C 22.8 / St 35.8 Pressure rating: PN 40	25 / 25	137	1506441
BAE — —	-	401) / 40	180	1506442
DN 50 mm	To suit conductivity electrodes	15		1506426
Boiler	LRGT 16-3 / LRG 16-60/61 Material: C 22.8 / St 35.8	20	197	1506427
DN 15 – 40 mm		25		1506428
BAE BAE	Pressure rating: PN 40	40		1506429
DN 50 mm Boiler 1" 3)	To suit conductivity electrodes LRGT 17-3 / LRG 17-60 Material: C 22.8 / St 35.8 Procesure rating: PN 63 351	25	244	1506497
BAE Pressure rating: PN 63				

Level Pots for Conductivity Electrodes


		Connections DN ²)	Length L approx.	Stock code
DN 15 – 40 mm	MF 1161 STT	15	351	1506467
п	For installing level electrodes outside the boiler LRGT 16-3 / LRG 16-60	20	353	1506468
DN 15-40 mm L 1"	Material: C 22.8 / St 35.8 / Ø 60.3	25	353	1506469
	Pressure rating: PN 40	40 ¹)	358	1506470
DN 15-40 mm — BAE	MF 1162 STT	15		1506454
	For installing level electrodes outside the boiler LRGT 16-4 / LRG 16-61	20	414	1506455
DN 15-40 mm Boiler	Material: C 22.8 / St 35.8 / Ø 139.7 Pressure rating: PN 40	25		1506456
1"		40 ¹)		1506457
DN 25 mm Boiler Connection BAE	MF 1171 STT To suit electrode type LRGT 17-3, LRG 17-60 Material: C 22.8 / St 35.8 / Ø 60.3 Pressure rating: PN 63	25	500	1506656
DN 25 mm BAE DN 50 mm ³) Boiler Connection DN 25 mm BAE DN 50 mm ³) Electrode Connection	3MF 88.9 To suit electrode type LRG 17-1/LRG 19-1	PN 63 25	418	1500987
L	For continuous blowdown valve BAE (automatic continuous blowdown control)	PN 160 25	415	1500988


¹⁾ Approval acc. to PED 2014/68/EU module A2


 $^{^{\}rm 2}\!)$ Please state nominal size (DN) when ordering.

³⁾ Approved in acc. with PED 2014/68/EU module 6

Application

BA 46, BA 47, BA 210, BA 211, ZK 29		Valve with adjustable stage nozzle and sample valve for continuous blowdown of steam boilers and evaporators.			
	BAE 46, BAE 47, BAE 210, BAE 211, ZKE 29	Valve with adjustable stage nozzle, sample valve, and electric actuator for automatically controlled continuous blowdown. Especially suited for boilers operating without constant supervision EN 12953.			

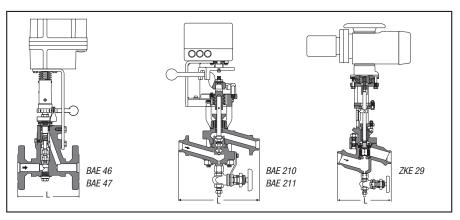
Pressure/Temperature Rating According to EN 1092-1 (2013) for: 1.0460 in accordance with PED and AD 2000 or A105 according to Pressure Equipment Directive (PED).

Туре	Ratings according to		Boiling point [°C] at max. pressure [bar] = T _s /p _{max}		
BA 46 / BAE 46	PN 40 1.0460 EN 1092-1		238/31		
	PN 40 A105	EN 1092-1	238/31		
	Class 150 A105	ASME B16.34	198/14		
	Class 300 A105	ASME B16.34	254/42		
BA 47 / BAE 47	47 / BAE 47 PN 63 1.0460		261/47		
PN 63 A105 EN 1092		EN 1092-1	261/47		
	Class 600 A105	ASME B16.34	271/55		
BA 210 / BAE 210	PN 250 1.0460	DIN 2401	348/161		
BA 211 / BAE 211	PN 320 1.7335	DIN 2401	374/220		
ZK 29 / ZKE 29	PN 160 1.7335	EN 1092-1	336/138		

End connections

Туре	Flanged EN Flanged ASME		Socket-weld	Butt-weld
BA 46 / BAE 46	•	•	•	_
BA 47 / BAE 47	•	•	•	_

Dimensions BA 46, BAE 46 [mm]

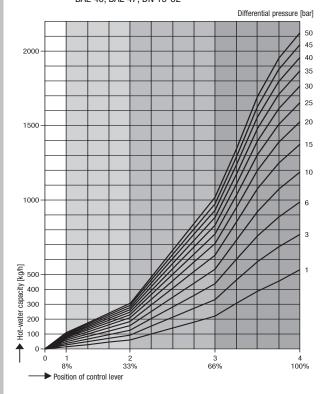

Connections	DN	15	20	25	32	40	50
Flanged EN	L	150	150	160	180	200	230
Flanged ASME Class 150	L	150	150	160	180	230	230
Flanged ASME Class 300	L	150	150	160	180	230	230
Socket-weld	L	200	200	200	200	250	250

Dimensions BA 47, BAE 47 [mm]

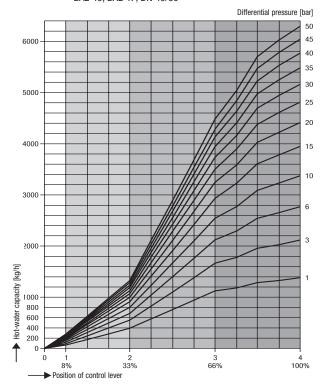
Connections	DN	15	20	25	32	40	50
Flanged EN	L	_	_	190	-	220	250
Flanged ASME Class 600	L	_	_	216	-	216	250
Socket-weld	L	_	-	200	-	250	250

Dimensions BA 210, BAE 210, BA 211, BAE 211 [mm]

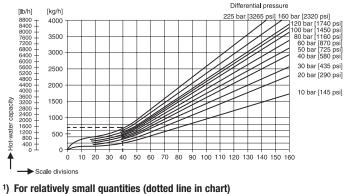
Connections	DN	15	20	25	32	40	50
Flanged EN	L	_	-	410	_	-	_
Flanged ASME Class 600	L	_	_	410	_	-	_
Flanged ASME Class 900/1500	L	_	-	440	_	-	_
Socket-weld	L	_	-	300	_	-	_

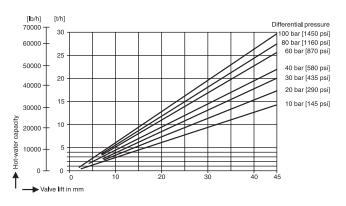


8



Capacity Charts


Chart 1: BA 46, BA 47, DN 15-32 BAE 46, BAE 47, DN 15-32


Chart 2: BA 46, BA 47, DN 40/50 BAE 46, BAE 47, DN 40/50

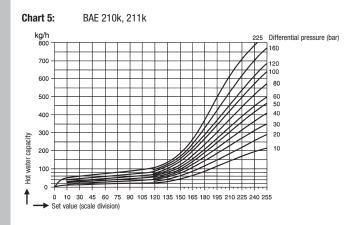

Chart 3: BA 210, BA 211 BAE 210, BAE 211

Chart 4: ZK 29 ZKE 29

use 210 k or 211 k (with special stage nozzle).

Description

A short boiler blowdown is performed by quickly opening the blow-down valve. This creates a short-term low-pressure area around the blowoff opening at the bottom of the boiler, causing a suction effect that removes accumulated sludge and sediments that have settled out in the lower part of the boiler.

The suction effect of an intermittent blowdown is only effective at the moment when the valve is being opened. For this reason the valve should only be opened for approx. 2 seconds. Longer opening periods waste boiler water.

For the closing process the design of the valve is of great importance. The closing force of the spring of the intermittent blowdown valves (M)PA is increased by the boiler pressure, which means that the valve is in a good condition for breaking up any dirt particles settled on the valve seat/plug, thus ensuring a positive shutoff.

The service life of the valve seat/plug is further increased by the pressure reduction that takes place in the radial stage nozzle installed downstream of the valve. The time interval between bottom blowdown processes can only be calculated indirectly by taking the boiler efficiency, the feedwater quality and the admissible boiler water quality into account.

Application

In steam boiler plants operating without constant supervision. Automation of intermittent blowdown by generating electric pulses to initiate a blowdown cycle via the GESTRA rapid-action intermittent blowdown valve MPA.

If space underneath the boilder is of concern, (M)PAs that can be tilted by 45° are available on request.

Controls

Tuno	Donign	Interval time	Pulse duration	Mains	Version				
Туре	Design	iliterval tillle	sec	voltage	a	b	f		
SPECTOR con	SPECTOR connect								
LRR 1-60	Continuous/intermittent blowdown controller for installation in control cabinet, with strainer and solenoid valve	1 h – 120 h	1 – 60	24 V DC	-	•	-		
SPECTOR module									
LRR 1-52 LRR 1-53	Continuous/intermittent blowdown controller for installation in control cabinet, with strainer and solenoid valve	1 h – 200 h	1 – 10	24 V DC	-	•	-		
SPECTORcompact									
TA 10	Cycling timer PRS 10 integrated in solenoid valve plug, strainer, solenoid valve	30 min – 10 h	0,5 – 10	230 V / 50 Hz 24 V DC	_	_	•		

Three-Way Solenoid Valve

Max. service pressure Min. differential pressure [bar] [bar]		Connection	Protection	
16 ¹)	min. 0.5	1/4" BSP	IP 65	

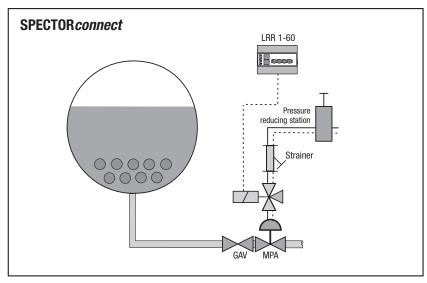
¹⁾ Max. admissible pressure for diaphragm actuator: 6 bar

Version

a = Field case

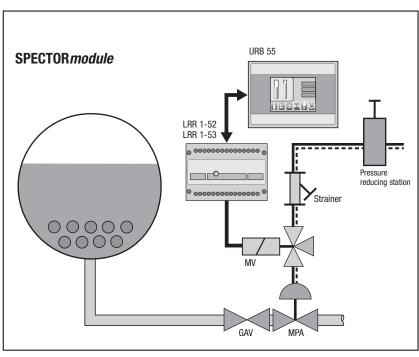
b = Plug-in unit in plastic case

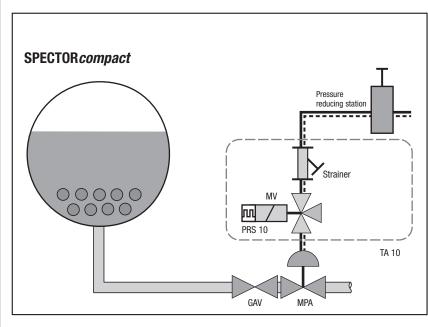
c = 19" slide-in unit


e = Case for panel mounting

f = Integrated in solenoid valve plug

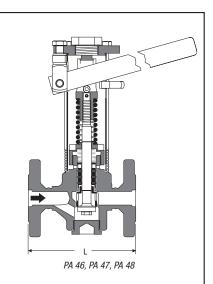
Strainer

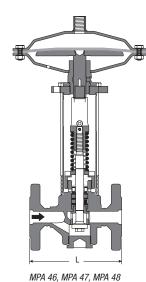

Material			Connection	Mesh size [mm]	
	Body	Filter	Connection	wesh size [mm]	
Gun metal Rg 5 1.4571		1/2" BSP	0.5		

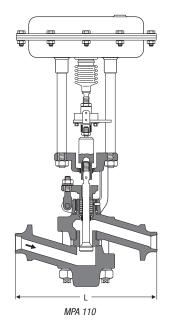

Controlled by LRR 1-60:

Туре	DN	PN	Stock code
Pressure reducing station 1/4"			147545
Strainer GSF 335			4301241
Reducer ½" – ¼"			3401145
Solenoid valve 6430 C ½", 230 V AC			52830

Controlled by LRR 1-52/-53:


Туре	DN	PN	Stock code
Pressure reducing			147545
station 1/4"			147343
Strainer 1/2"			4301241
GSF 335			1001211
Reducer ½" – ¼"			3401145
Solenoid valve 6340 C			146247
1/4", 24 V DC			140247
MPA 46			
< 6 t/h	25	40	3661500
< 24 t/h	40		3661700
MPA 47			
< 6 t/h	25	63	3671500
< 24 t/h	40		3671700




Controlled by TA 10:

Туре	DN	PN	Stock code
TA 10 24 V DC Pressure reducing station			360224252 147545
MPA 46 < 6 t/h < 24 t/h	25 40	40	3661500 3661700
MPA 47 < 6 t/h < 24 t/h	25 40	63	3671500 3671700

Application

PA 46, PA 47, PA 48, PA 110	Manual intermittent blowdown of steam boilers and pressurized hot-water boilers.
MPA 46, MPA 47, MPA 48, MPΔ 110	Automatic, programme-controlled intermittent blowdown of steam boilers and waste-heat boilers. Especially suited for boilers operating without constant supervision EN 12953.

Pressure/Temperature Rating According to EN 1092-1 (2013) for: 1.0460 in accordance with PED and AD 2000 or SA105 according to Pressure Equipment Directive (PED).

Туре	Ratings accord	ling to	Boiling point [°C] at max. pressure [bar] = T _s /p _{max}	Control fluid MPA	Max. control pressure MPA
PA 46	PN 40 1.0460	EN 1092-1	238/31		
MPA 46	PN 40 SA105	EN 1092-1	238/31		
	Class 150 SA105	ASME B16.34	198/14	Water or	
	Class 300 SA105	ASME B16.34	254/41	compressed	8 bar
PA 47	PA 47 PN 63 1.0460		261/47	air	
MPA 47	PN 63 SA105	EN 1092-1	261/47		
	Class 400/600 SA105	ASME B16.34	271/55		
PA 48	PN 100 1.0460	EN 1092-1	287/70		
MPA 48	Class 600 SA105	ASME B16.34	287/70		
PA 110	PN 250 1.7335	EN 1092-1	374/220		
MPA 110 PN 250 A182-F12		EN 1092-1	374/220		
	Class 400/600 A182-F12	ASME B16.34	300/85 Compres		6 bar
	Class 900 A182-F12		326/124		
	Class 1500 A182-F12	ASME B16.34	363/196		

End Connections

Туре	Flanged EN	Flanged ASME	Socket-weld	Butt-weld
PA 4x, MPA 4x	•	•	•	-
PA 110, MPA 110	•	•	_	•

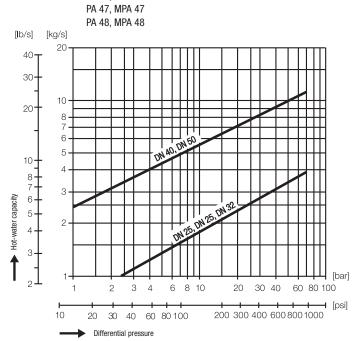
Dimensions PA 46, MPA 46 [mm]

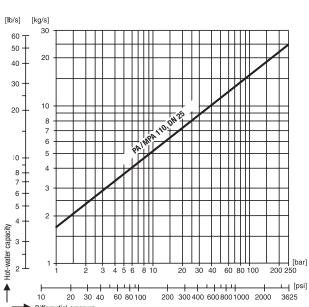
Connection	DN	20	25	32	40	50
Flanged EN	L	150	160	180	200	230
Flanged ASME Class 150	L	150	160	180	230	230
Flanged ASME Class 300	L	150	160	180	230	230
Socket-weld	L	200	200	200	250	250

Dimensions PA 47, PA 48, MPA 47, MPA 48 [mm]

Connection	DN	20	25	32	40	50
Flanged EN	L	-	190	-	220	250
Flanged ASME CI 600	L	_	216	-	216	250
Socket-weld	L	-	200	-	250	250

Dimensions PA 110, MPA 110 [mm]


Connection	DN	20	25	32	40	50
Flanged EN	L	-	410	-	-	-
Flanged ASME CI 600	L	_	410	-	-	-
Flanged ASME CI 900 / 1500	L	-	440	-	-	-
Butt-weld end	L	_	300	_	-	-



Capacity Charts

PA 46, MPA 46

Chart 1:

PA 110, MPA 110

Chart 2:

The Benefits of the New GESTRA Intermittent Blowdown Valves

- Improved blowdown effectiveness through integrated pressure chamber in the outlet section of the body
- **Greater tightness** through additional wiper rings between the packing seals
- Longer service life and availability through radial stage nozzle downstream of the valve seat
- Insensitive to waterhammer through absence of large body cover
- Reduced wear through new arrangement of the seals on the lowpressure side
- Consistent implementation of the work safety regulations through novel distance tube
- Quick and easy installation thanks to multifunction parts
- Reduced maintenance and service effort through additional cup springs acting on the compression spring and through the possibility of tensioning the seals from outside
- Better checking functionally through relief vent for leak detection from outside
- Greater convenience through innovative clip fastening of the hand lever PA 46/47/48

Liquid Monitoring - Detecting Ingress of Oil in Condensate Systems and Marine Installations

Purpose

Continuous monitoring of transparent liquids to detect any ingress of insoluble foreign matter causing turbidity, such as emulsified oils and greases. Measuring of turbidity and signal evaluation for indication, recording and control. Tripping of alarms, control valves

The oil turbidity detector OR 52/. consists of a measuring sensor ORG 12/ORG 22 and the ORT 6.

Application

Condensate monitoring in steam boilers to detect any ingress of oils and greases in accordance with $EN\ 12952/..53$.

Monitoring of cooling water, drinking water, condensate and beverages for turbidity.

Monitoring of cooling water, drinking water, condensate and beverages for turbidity in hazardous areas – zone 1(on request).

Hot-water monitoring in district heating plants.

Filter and cooling-water monitoring on ships.

Technical Data

Туре	Sensor	PN	Connection	Material	Measuring transducer ORT 6 Wall-mounting case, measuring range 0 – 25 ppm 2 alarm relay outputs (instantaneous/delayed) LED bar chart display 4 – 20 mA current output
OR 52/5	ORG 12	10	3/8"	GG 25	•
OR 52/6	ORG 22	10	3/8"	1.4580	•
OR 52/5 EX	ORG 12	10	3/8"	GG 25	•
OR 52/6 EX	ORG 22	10	3/8"	1.4580	•

Liquid Monitoring - Detecting Ingress of Acids, Alkalis, Raw Water, Dyes, etc.

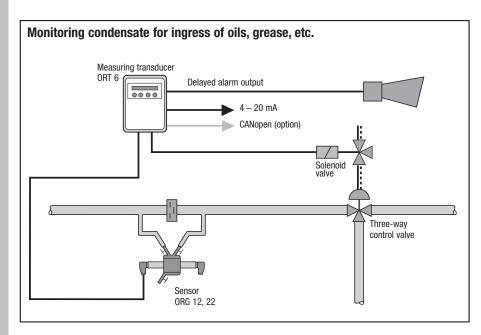
Purpose

Monitoring conductive liquids for contamination by foreign matter that increases the TDS concentration; conductivity monitoring (TDS control), signalling and display.

Application

For condensate and feedwater monitoring in steam and (pressurised) hot water plants to detect ingress of acids, alkalis, raw water, dyes, etc.

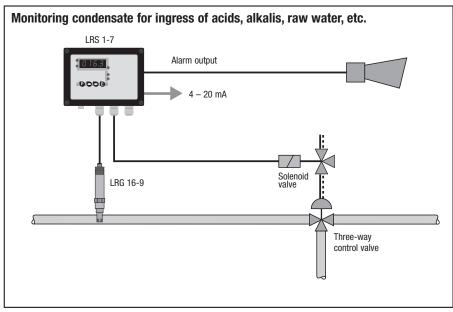
Technical Data of Conductivity Electrodes


Туре	PN	Connec- tion	Service pressure [bar] saturated steam temp.	Integrated temp. sensor	Ambient temperature at terminal	Lengths supplied [mm]	ΤÜV	GL
LRG 16-9	40	1/2"	32 / 238 °C	•	70 °C	43	•	•
LRGT 16-3	40	1"	32 / 238 °C	•	70 °C	200 / 300 / 400	•	•

Technical Data of Electronic Control Unit/Controller

Tuno	Outputs		Mains voltage	Protection	Design				Measuring range	TÜV	CI
Туре	switching	4 – 20 mA	Standard	Protection	a	b	c	е	ineasuring range	100	GL
LRS 1-7a	•	•	230 V/AC	IP 65	•	_	_	_	0.5 – 10,000 μS/cm	•	•
LRS 1-50	•	-	24 V/DC	IP 20	_	•	_	-	0.5 – 10,000 μS/cm	•	-

_



Туре	Stock code
OR 52/5	4003040
OR 52/6	4003140
Pneumatic three-way control valve PN 16, DN 50 with pilot valve	1503407
Non-return valve DISCO RK 86a, SF 20 mbar PN 40, DN 50	121180182
Optional CANopen interface	.60

Non-return valve see pages 44 - 54

Type approval: TÜV WÜL xx-009

Туре		Stock code
LRG 16-9		3771839
Connecting cable male / female	5 m	1502563
LRS 1-7		3781640
Pneumatic three-way control valve PN 16, DN with pilot valve	50	1503407

Type approval: TÜV WÜL xx-014

Optional

Special voltage 24 V AC

.51

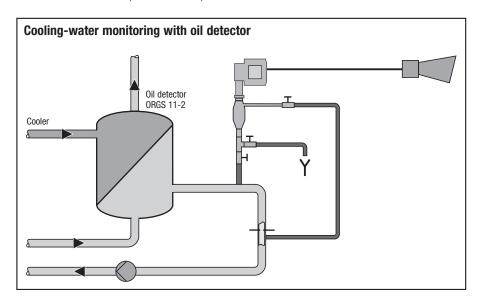
Туре	Stock code
LRG 16-9 with measuring chamber, G½	377183930
LRS 1-50 24 V DC	3041041
DISCO Non-return valve RK 86a, SF 20 mbar PN 40, DN 50	121180182

Type approval: TÜV WÜL xx-018 EG Z-IS-TAF-MUC-12-08-103881-007

Purpose and Application of Oil Detector

The oil detector ORGS 11-2 is used for monitoring cooling water to detect any ingress of oil. An alarm and control unit installed downstream of the detector will dump contaminated cooling water, thereby preventing oil contamination of the installation to be cooled. The equipment detects all low-density matter that is insoluble in water, not emulsified, and

has a lower electrical conductivity than water. Antirust oils, which emulsify in cooling water, do not trigger an alarm.

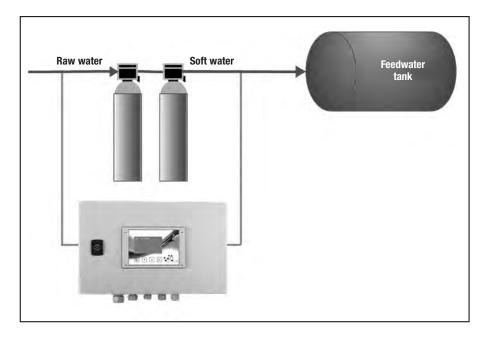

The output contact relays of the contamination detector are self-monitoring and of the normally closed type, and will therefore trigger an alarm in the event of a malfunction.

Technical Data

Туре	PN	Connection	Material
ORGS 11-2	6	Inlet E0-15-L	C 22.8
		Outlet E0-12-L/S	
		Drain E0-15-L	

Туре	Stock code
ORGS 11-2	4041140

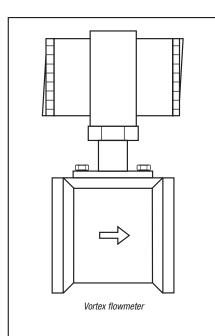
Type approval for marine applications see page 104

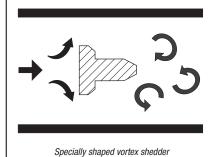


Purpose and Application Residual Hardness Control in Feedwater Systems

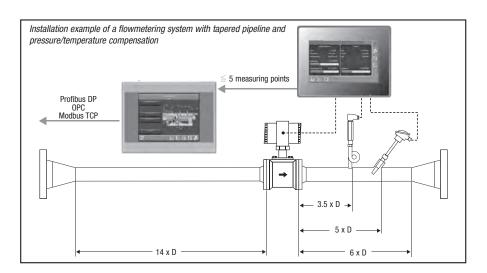
Softcontrol Data continuously monitors the residual hardness in a water softener system. The automatic internal calibration and self-monitoring routine ensure a high level of operational and process reliability. All analysis results and alarms are logged chronologi-

cally and stored on an integrated USB flash drive. Softcontrol Data provides continuous monitoring and logging of the statutory hardness limit of 0.05° dH. A 4-20 mA output signal enables integration in external PLC systems. The equipment is easy to install and works completely self-sufficiently. Apart from


exchanging the Plug&Play sensor every six to nine months no other maintenance is required. Softcontrol Data offers a clear display of information and individual adjustment options for limit values, test cycles, unit of measurements and language settings.


Designation	Pressure rating	Connections	Stock code	
Softcontrol Data		PA tubing		
	PN 10	0D 4 mm/	1507859	
		ID 2 mm		

153


Principle of Measurement

The design is based on the Kármán vortex street principle using a body installed perpendicular to the axis of the pipe. The vortices generated in the flow stream produce pressure oscillations which are converted into electrical signals by a sensor. The output signal is then evaluated and processed in the flow computer.

Recommended steam flowrate in in [kg/h] for Vortex flowmeter 83*)

Absolute pressure [bar]	DN 20	DN 25	DN 40	DN 50	DN 80	DN 100	DN 150	DN 200	DN 250	DN 300
1.0	30	45	120	180	480	750	1700	3000	4500	6700
1.4	40	65	165	250	650	1030	2300	4100	6400	9200
1.6	45	72	185	290	750	1150	2600	4650	7200	10500
1.8	50	80	210	320	830	1300	2900	5200	8100	11700
2.0	60	90	230	350	920	1430	3200	5700	8900	12900
2.5	70	110	280	440	1130	1700	4000	7050	11000	15900
3.0	85	130	335	520	1340	2100	4700	8400	13000	18500
4.0	110	170	440	680	1750	2750	6200	11000	17000	24500
5.0	135	210	540	850	2170	3400	7600	13500	21000	30500
6.0	160	250	645	1000	2550	4030	9050	16100	25000	36000
9.0	235	370	745	1450	3780	5900	13300	23500	37000	53000
11.0	285	440	950	1790	4580	7150	16100	28500	44000	64000
14.0	360	560	1150	2250	5780	9030	20300	36000	56000	81000
21.0	535	830	2140	3350	8550	13400	30100	53500	83000	120000
31.0	790	1230	3150	4930	12600	19700	44300	78800	123000	177000

^{*)} For minimum and maximum flowrates see data sheet.

Steam-flow measurement system for constant saturated steam pressure

consisting of: Vortex flowmeter type 84 W-U and flow computer type SPECTOR*control* Flow

Steam-flow measurement system for fluctuating saturated steam pressure (temperature compensated)

consisting of: Vortex flowmeter type 84 W-U, flow computer type SPECTOR*control* Flow and

temperature sensor

TRG 5-63, L = 160 mm

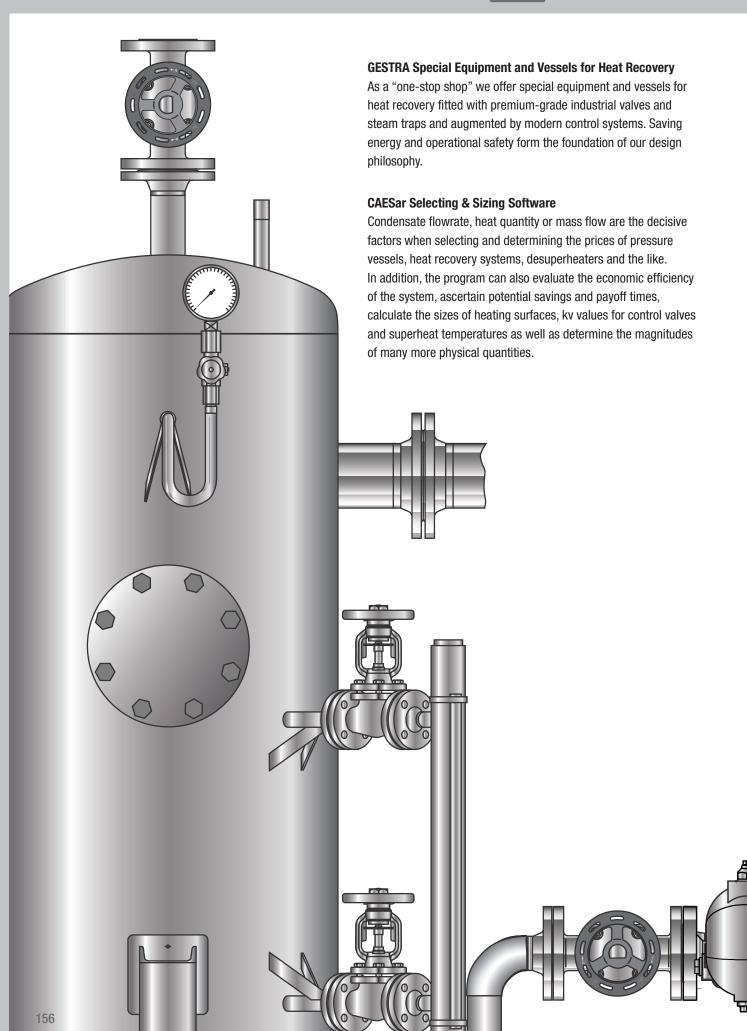
Steam-flow measurement system for fluctuating saturated steam pressure (pressure compensated)

consisting of:
Vortex flowmeter type
84 W-U,
flow computer type
SPECTOR*control* Flow and
pressure transmitter DRT
with syphon and pressure
gauge.

Steam-flow measurement system for superheated steam

(temperature and pressure compensated) consisting of:
Vortex flowmeter type 84 W-U, flow computer type SPECTOR control Flow, temperature sensor TRG 5-63 and pressure trans-

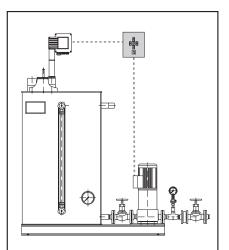
mitter DRT with syphon and


pressure gauge

For up to 5 measuring points SPECTOR*control* II (a visual display & control system for viewing, calculating, monitoring and controlling) can be used.

Ω

GESTRA pressure equipment is designed, constructed and tested to PED¹) 2014/68/EU and AD Bulletin 2000. Pressure equipment of category I, II, III and IV bears the CE marking. The Declaration of Conformity certifies that the equipment satisfies the applicable safety requirements of the PED.


Pressure equipment that falls within the scope of article 4 section 3 of the PED 2014/68/EU is designed and manufactured in accordance with what is recognised as sound engineering practice. This equipment will not be CE marked but must be accompanied by a Declaration of Manufacturer.

1) PED = Pressure Equipment Directive

Special Equipment and Vessels for Heat Recovery

	Page
Condensate Recovery and Return System Quick CC	158
Open-Type Condensate Recovery and Return Tank SDL (S)	159
Closed-Type Condensate Recovery and Return Tank SDL (S)	160
Steam Powered Condensate Return Tank KH	161
Steam-Powered Condensate-Return Unit (Fluid Lifter) FPS	162
Desuperheaters EK, KD	163
Steam Regenerators GRDE	164
Heat Exchanger Unit GESTRAheat	165
Feedwater Deaerating Plants NDR, SW, FD	166 – 167
Flash Vessels VD	168
Blowdown Receiver (Mixing Cooler) VDM	169
Condensate Dampening Pot ED	170
Steam Driers and Purifies TD (Steam Separators)	171
Air Driers and Purifiers (Steam Separators)	171
Questionnaire for preparing offers	173 – 180

Condensate tank of rectangular design type Quick CC with high-pressure centrifugal pump(s) installed next to the tank

Application

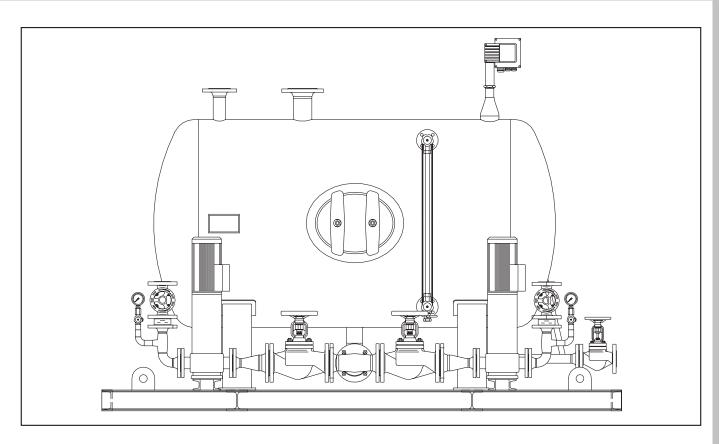
Condensate tanks are used to collect the condensate coming from steam users or flash vessels. From the tank the condensate is pumped into the feedwater tank by a level-controlled pump, in most cases via a deaerator.

Rectangular condensate tank type Quick CC

The standard range of rectangular condensate tanks is designed for condensate flowrates of up to 8 t/h and a max. service pressure of 0.1 bar g.

Tank made of steel type S235JRG2, inside: untreated, outside: anti-corrosion coating or stainless steel 1.4571 with two condensate pumps and accessories installed next to the tank, e.g.

bimetal dial thermometer, water-level indicator, GESTRA level electrode and control for automatic pump operation, non-return valves, shut-off valves, high-pressure centrifugal pump(s) and pressure gauge. Completely assembled and interconnected, control cabinet supplied but not mounted.


Dimensions and Weights

Pumping capacity	Delivery head	Туре	Stock code	Weight	Туре	Stock code	Weight
m³/h	mWs	Quick CC	2 pumps	kg	QuickCC	1 pump	kg
1	28	340-2-CR1-5	5201271	230	340-1-CR1-5	5201281	200
1	57	340-2-CR1-10	5201272	240	340-1-CR1-10	5201282	205
2	20	550-2-CR1-5	5201471	275	550-1-CR1-5	5201481	245
2	42	550-2-CR1-10	5201472	285	550-1-CR1-10	5201482	250
3	23	750-2-CR3-5	5201573	335	750-1-CR3-5	5201583	295
3	46	750-2-CR3-10	5201574	345	750-1-CR3-10	5201584	300
4	15	1000-2-CR3-5	5201773	390	1000-1-CR3-5	5201783	350
4	32	1000-2-CR3-10	5201774	400	1000-1-CR3-10	5201784	355
6	19	1500-2-CR5-4	5201875	485	1500-1-CR5-4	5201885	445
6	35	1500-2-CR5-7	5201876	495	1500-1-CR5-7	5201886	450
8	22	2000-2-CR10-3	5201977	610	2000-1-CR10-3	5201987	550
8	60	2000-2-CR10-7	5201978	645	2000-1-CR10-7	5201988	565

Туре		Quick CC 340	Quick CC 550	Quick CC 750	Quick CC 1000	Quick CC 1500	Quick CC 2000
Volume	[1]	340	550	750	1000	1500	2000
Length	[mm]	1507	1657	1827	1977	2545	3075
Width	[mm]	600	750	900	1000	1000	1000
Height	[mm]	1532	1532	1532	1532	1532	1532

Dimensions of control cabinet: W x H x D: 400 x 500 x 210 [mm]

Condensate receiver tank of cylindrical design type SDL (S) with high-pressure centrifugal pump(s) installed next to the tank

L = horizontal design; S = vertical design

Size	Volume [l]	Pumping capacity [m³/h]
- 1	250	1
II	390	2
III	850	4
IV	1370	6
V	2100	9
VI	2900	12
VII	3800	16
VIII	4500	20
IX	5900	25
Х	6900	30

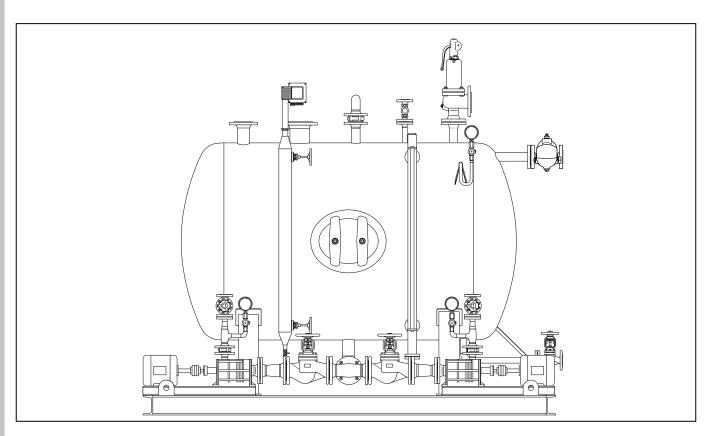
Max. condensate temperature 98°C

Application

Condensate tanks are used to collect the condensate coming from steam users or flash vessels. From the tank the condensate is pumped into the deaerator by level-controlled pumps.

Open condensate tank of cylindrical design type SDL (S)

The standard range of cylindrical condensate tanks is designed for condensate flowrates of up to 30 t/h and a max. service pressure of 0.5 bar. Condensate tanks for larger flowrates available on request.


Tanks available as horizontal or vertical design, made of steel S235JRG2, inside: untreated, outside: anti-corrosion coating. Two high-pressure pumps and associated valves and accessories installed next to the tank: e. g. bimetal dial thermometer, pressure gauge

unit, water-level indicator, GESTRA level control and level electrode for automatic pump operation and non-return valves are part of the installation.

Other valve and tank materials available on request.

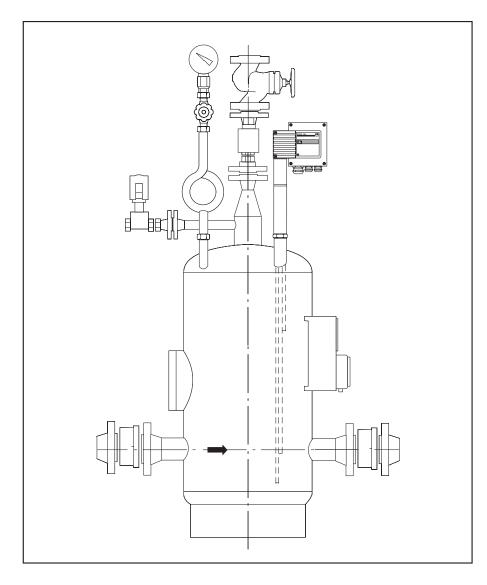
Other pumping capacities and discharge heads on request.

Condensate receiver tank of cylindrical design type SDL (S) with horizontal-type centrifugal pump(s) installed next to the tank

L = horizontal design; S = vertical design

Size	Volume [l]	Pumping capacity [m³/h]
- 1	250	1
II	390	2
III	850	4
IV	1370	6
V	2100	9
VI	2900	12
VII	3800	16
VIII	4500	20
IX	5900	25
Х	6900	30

Application


Condensate tanks are used to collect the condensate coming from steam users or flash vessels. From the tank the condensate is pumped into the deaerator by level-controlled pumps.

Closed condensate tanks of cylindrical design type SDL (S)

The standard range of cylindrical condensate tanks is designed for condensate flowrates of up to 30 t/h and a max. service pressure of 4 bar. Condensate tanks for larger flowrates available on request.

Tanks available as horizontal or vertical design, made of steel boiler plate type P265GH, inside: untreated, outside: anticorrosion coating. Two horizontal-type centrifugal pumps and associated valves and accessories installed next to the tank: e. g. bimetal dial thermometer, pressure gauge assembly, magnetically operated liquid level gauge, level electrode and control for automatic pump operation, safety device, overflow, air vent, vacuum breaker, shut-off valves and nonreturn valves are part of the installation.

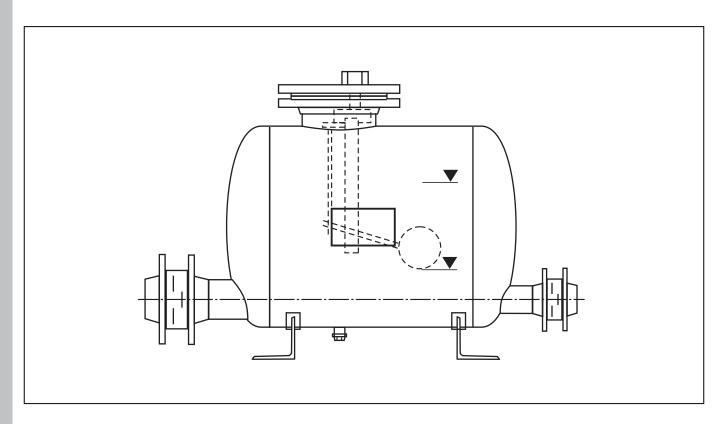
Application

Condensate tanks are used to collect the condensate from steam processors or flash vessels. From the tank the condensate is returned to the main condensate tank or deaerator with the aid of level-controlled booster steam.

Steam-powered condensate return unit KH...

The standard version is suitable for condensate flowrates of up to 10 t/h and a max. service pressure of 12 bar g.

The condensate return tank is made from steel type P265GH. Outside: anti-corrosion coating. Inside: untreated.


Associated valves and equipment such as pressure gauge assembly, solenoid valve, level electrode and control for automatic booster steam supply, non-return valves are completely assembled and interconnected.

Size	Volume [l]	Pumping capacity [m³/h]	Booster steam pressure [barg]	Pump capacity [bar]
KH 13-2	50	2	12	8.4
KH 13-3	75	3	12	8.4
KH 13-5	100	5	12	8.4
KH 13-10	390	10	13	8.4

Other tank and valve materials available on request.

Ċ

Size	Volume [l]	Booster steam pressure [barg]	Pumping capacity
FPS 11-8	45	8	up to 1000 kg/h
FPS 23-10	88	10	up to 2300 kg/h
FPS 14-13	100	12	up to 5000 kg/h

UNA 25-PS and UNA 25-PK are also available for flowrates of approx. up to 600 kg/h.

Other materials for tank and valves available on request.

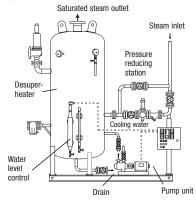
Application of the Fluid Lifter

Condensate tanks are used to collect the condensate from steam processors or flash vessels. From the tank the condensate is returned to the main condensate tank or deaerator with the aid of float-controlled booster steam.

Steam-Powered Condensate-Return Unit (Fluid Lifter) type FPS 14...

The condensate is returned to the main condensate tank with the aid of booster steam, without electric power. The standard version of the FPS 14 is suitable for condensate flowrates of 5 t/h and a max. service pressure of 12 bar g.

The discharge capacity decreases with rising back pressure. The tank is made of steel of P265GH. Outside: anti-corrosion coating. Inside: untreated. The non-return valves are completely assembled and interconnected, inclusive of counter-flanges, bolts and gaskets.



Superheated steam outlet Electric temperature control Cooling water regulation Superheated Steam inlet Cooler with equipment Superheated steam inlet

EK, Injection cooler with fixed jet orifices

Drain

System 2

KD, Water-bath desuperheater

Application

Heating installations in all industries Heating of drying calenders in the paper industry

Heating of boiling pans in the foodstuff industry

Heating of cable presses

Radiant panels for hardware production in the electrical industry

Steam moistening plants in the textile industry

System Description

System 1 Injection cooler with fixed jet orifices

The cooling water is injected through special jet orifice into the steam flow. The amount is adjusted by a control valve upstream of the desuperheater and controlled by the high differential pressure. The type and number of nozzles are dictated by the operating data. The internals of the pipe installed downstream of the equipment prevent temperature shocks at the external pipe.

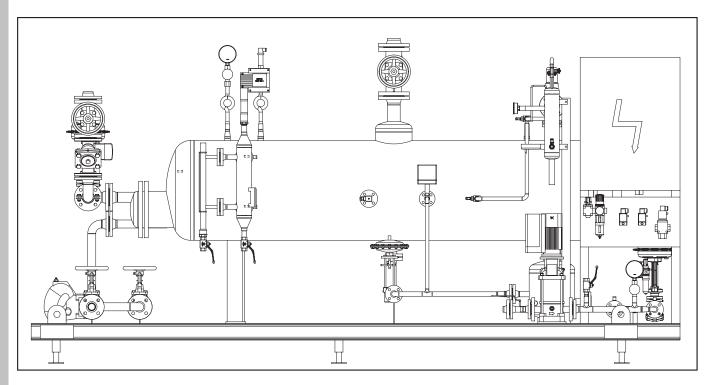
System 2 Water-bath desuperheater

The heat of the superheated steam causes the cooling water/condensate to evaporate, thereby cooling the superheated steam. The steam produced is conducted through steam separating units and has a steam content of more than 98 % (i.e. less than 2 % residual moisture).

Criteria for System Selection

- 1. What is the ratio between minimum and maximum steam quantity in the control range?
- 2. What is the pressure and the temperature of the available cooling water?
- 3. How close must the temperature of the desuperheated steam be to that of saturated steam?

Questions concerning System Design


- 1. Maximum steam flow at inlet?
- 2. Minimum steam flow at inlet?
- 3. Maximum service pressure?
- 4. Maximum temperature at inlet?
- 5. Standard temperature at inlet?
- 6. Temperature at outlet?
- 7. Saturated-steam temperature?
- 8. Temperature of injected cooling water?
- 9. Injected cooling-water flow?
- 10. Cooling-water pressure at cooler?
- 11. Pump pressure?
- 12. Design pressure?
- 13. Design temperature?
- 14. Length of installation?

Technical Data

		System 1	System 2
Pressure rating	[bar]	28	28
Maximum temperature	[°C]	450	380
Cooling water pressure above steam pressure	[bar]	5 – 9	1
Steam flowrate	[t/h]	100	15
Steam flow ratio		1:5	1:100
Set point above saturation temperature	[K]	5	_

Higher pressures, temperatures and steam flowrates available on request.

Application

Steam regenerators are used to produce saturated steam for a secondary system from steam or pressurized hot water.

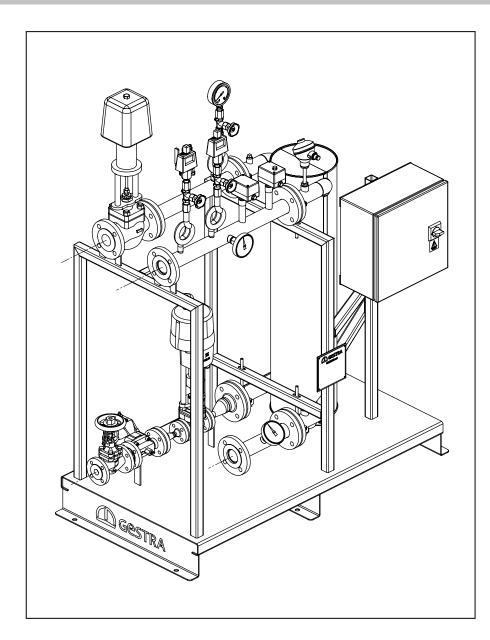
Pure steam, without any contaminants that might be detrimental to health such as hydrazine, is produced.

Steam regenerators are therefore especially suited for sterilizing equipment in hospitals, steaming and drying chambers in the foodstuff industry, and for the production of distillates.

Technical Data (standard)

Service pressure	primary	[bar]	28
Service temperature	primary	[°C]	250
Service pressure	secondary	[bar]	12
Service temperature	secondary	[°C]	200
Capacity range		[kW]	5000
Feedwater quality		[µS/cm]	< = 5
Boiler water quality		[µS/cm]	< = 100

Steam regenerators for higher pressure/temperature ratings and larger capacities on request.


Standard Installation

Steam regenerators with self-acting, electric or electropneumatic heating-steam control

Compact system with manual intermittent / continuous boiler blowdown and the required basic equipment of a feedwater supply control system Limiting conditions: Quality of feedwater $\leq 5 \,\mu\text{S/cm}$, pressure of heating steam: 6 barg, pressure of pure steam: 4 barg

Туре	Pure steam flowrate [kg/h]	Ø [mm]	Overall length approx. [mm]	Max. design pressure/ temperature primary [bar/°C]	Max. design pressure/ temperature secondary [bar/° C]
GRDE 5	300	450	3300	12/200	6/200
GRDE 6	600	500	3800	12/200	6/200
GRDE 7	1000	600	3500	12/200	6/200
GRDE 8	1200	700	4000	12/200	6/200

GESTRA Heat exchanger unit type **GESTRAheat**

The GESTRAheat is a compact solution for transferring energy from steam to water. It is suitable for generating a precise water temperature in applications with constant and foreseeable load conditions.

Fully assembled package with coordinated heat exchangers and temperature control devices.

Additional safety, control and steam treatment systems (if required) are easy to install.

GESTRAheat heat transfer system comprising:

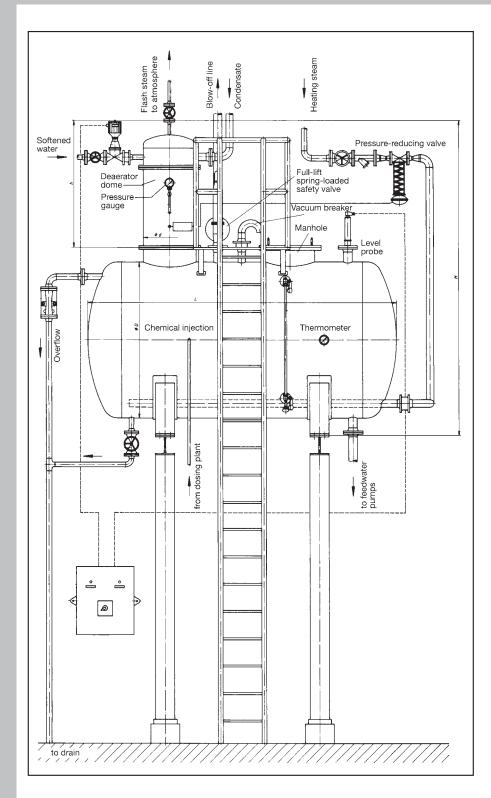
Shell and tube heat exchanger equipped as follows:

Control on the condensate side

Stop valve on the steam side

On the condensate side: Electrically actuated control valve

Measurement and control equipment: Temperature sensor, temperature regulator, thermometer


The system is assembled and wired ready for connection, and is delivered on a sturdy base frame.

Power supply: 230 V, 50 Hz

Nominal power	Туре	Valve type	Dimensions (mm)				Flanged ends DN	
(kW)			Height	Length	Width	Steam	Water	Condensate
200	GH-200kW	Pneumatic	1951	1472	775	40	50	25
400	GH-400kW	Electric	approx. 1865	approx. 1500	approx. 900	50	65	25
600	GH-600kW	Pneumatic	approx. 2025	approx. 1500	approx. 935	65	80	25
800	GH-800kW	Electric	approx. 2080	approx. 2000	approx. 965	80	100	40
1000	GH-1000kW	Pneumatic	approx. 2275	approx. 2000	approx. 965	100	100	40
1200	GH-1200kW	Electric	approx. 2275	approx. 2000	approx. 965	100	100	40

٠.

Application

To avoid corrosion damage to steam boiler plants, the content of aggressive gases, such as oxygen and carbon dioxide, in the feedwater must be as low as possible. The German Technical Supervisory Association (VdTÜV) has issued directives concerning boiler feedwater quality which are applied by German boiler manufacturers when giving a warranty on their boilers.

Thermal deaeration in addition to chemical deaeration is very important for maintaining the required feedwater quality.

Recommendation:

For quality of soft water:

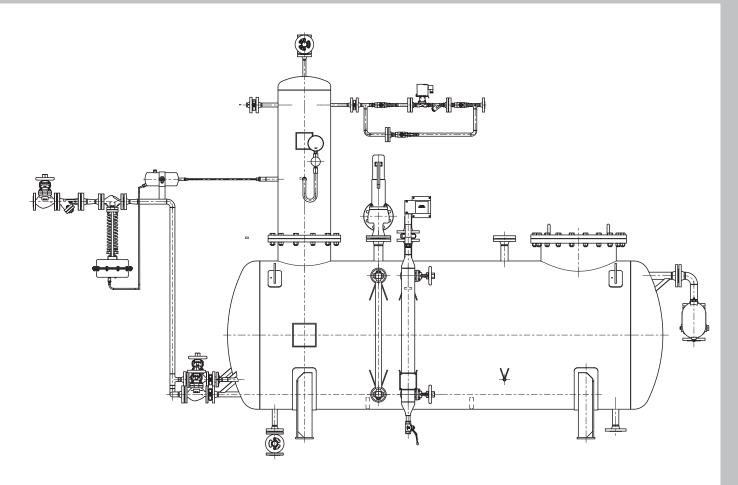
Concentration of chloride approx. 50 mg/l Conductivity approx. 250 µS/cm

Deaerating dome NDR

Туре	Capacity m³/h	Ø mm	Height approx. mm
250	0.5 – 1.6	250	1050
350	1.7 – 3.0	350	1260
450	3.1 – 5.0	450	1280
550	5.1 - 8.0	555	1300
650	8.1 – 11.0	650	1820
800	11.1 – 15.0	800	1850
900	15.1 – 19.0	900	1870
1000	19.1 – 24.0	1000	1880
1200	24.1 - 33.0	1200	2323
1400	33.1 – 40.0	1400	2473

Feedwater tank SW

Size	Ø	Length	Volume of tank
3126	mm	approx. mm	I
I	800	2360	1000
II	1000	2940	2000
III	1200	3050	3000
IV	1200	3550	4000
V	1600	3680	6000
VI	1600	4680	8000
VII	1600	5680	10000
VIII	2000	5000	16000
IX	2000	7850	22000
Χ	2500	7050	30000
XI	2500	9100	40000


Technical Data (Standard)

Max. service pressure	Max. service temperature	Capacity range	Materials (DIN reference)	Residual oxygen
0.5 hor	0.5 bar 111 °C 0.5 – 24 m³/h		S235JRG2	- 0.02 mg/l
0.5 bar	111 6	0.5 – 24 m ³ /h	1.4571	< 0.02 mg/l

Higher capacities and pressures on request

The base support, access ladder and operating platform are not part of the GESTRA AG product range.

Consisting of:

Deaerator dome NDR, completely of stainless steel 1.4571, wet deck surface permanently welded

surface treament: pickled and passivated feedwater tank SW, material: S235JRG2

surface treatment: anti-rust coating outside, untreated inside

Operating conditions:

Condensate approx. 70 %, make up water approx. 30 %

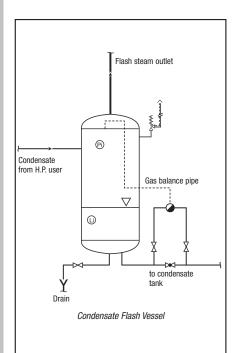
heating steam pressure: 5 - 10 barg, operating pressure: 0.3 barg

admissible service pressure: 0.5 barg, admissible service temperature: 111 °C

Manufactured and tested in accordance with PED 2014/68/EU and AD 2000 Bulletin, conformity assessment: paragraph 4, section 3 Without official acceptance inspection but with factory pressure test

If operated properly, the residual oxygen value O_2 will be below 0.02 mg/l and carbon dioxide CO_2 will no longer be detectable.

Supplied with:

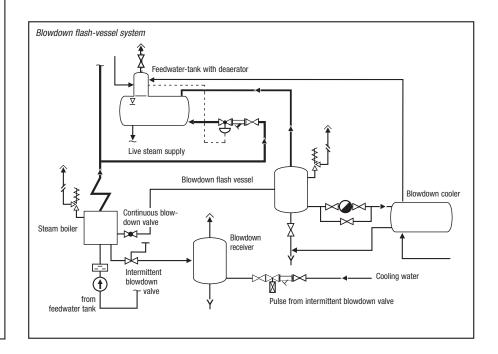

Basic equipment for the feedwater deaerator, water level control Heating steam control (mechanical or electropneumatic)

Base, access ladder and operator platform are not included in our product range.

Туре	Service pressure	Service temperature	Capacity	Residual oxygen
FD-2m / FD-2p			1.0 - 2.0 m3/h	
FD-4m / FD-4p			2.1 - 4.0 m3/h	
FD-6m / FD-6p	0.5 barg	111 °C	4.1 - 6.0 m3/h	< 0.02 mg/l
FD-8m /FD-8p			6.1 - 8.0 m3/h	
FD-10m /FD-10p			8.1 - 10.0 m3/h	

e

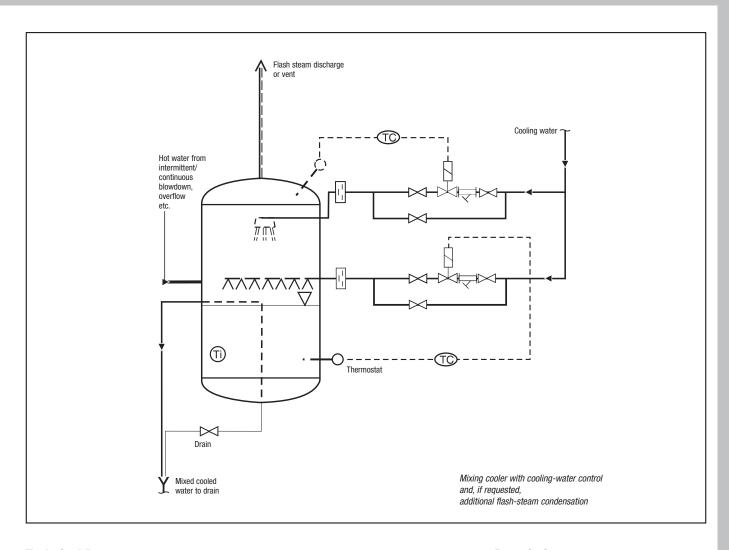
Application


Condensate flash vessel

Condensate flash vessels can be used in all steam plants where condensate from steam consumers is reduced to a lower pressure. This pressure drop constitutes a change of the energy content that causes some of the condensate to revaporize and form flash steam

In the flash vessel the flash steam is separated from the water, and then fed into a low-pressure steam system. The condensate remaining in the flash vessel is discharged into a condensate tank.

Blowdown flash vessel


Blowdown flash vessels are used if the flash steam formed downstream of continuous blowdown valves is to be utilized.

Technical Data

Туре	Service pressure [bar]	Service temperature [°C]	Condensate flowrate [t/h]	Volume [l]	Material (DIN reference)
VD	0.5 – 12	111 – 250	1.2 – 40	50 – 1400	S235JRG2 P265GH
VD 45	28	250	0.2 – 1.2	15	P265GH GGG-40.3

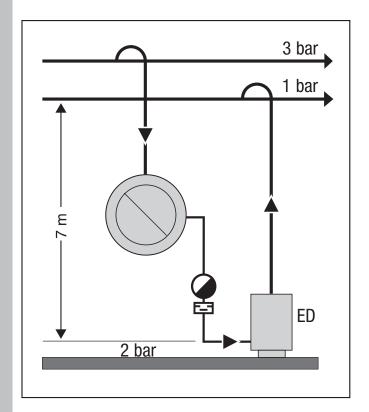
Technical Data

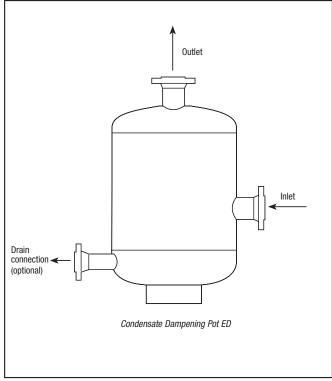
Max. service pressure	Max. temperature	Capacity range	Material
0.5 bar		up to 15 t/h	S235JRG2 (RSt 37-2)
	111°C		P265GH (H II)
			1.4541
			1.4571

Description

Mixing coolers are blowdown receivers that cool hot waste water that can no longer be used for heat recovery and therefore is discharged into pits, drains or sewage systems.

Application


Process plants where contaminated, hot waste water is being formed.


Steam boiler plants where the blowdown is cooled with untreated water.

Mixing coolers for vapours.

٠.

Technical Data

Service pressure	Related temperature	Capacity range	Material	Volume [l]
18 bar	250°C	up to 15 t/h	S235JRG2 / P265GH	4 to 50

Description

The condensate dampening pot provides a cushioning effect to neutralize waterhammer. The condensate is discharged without noise.

Application

Steam and condensate systems.

Description

Steam separators are used to remove condensate and dirty water carry-over from steam. By this means trouble-free operation and a long service life of the heat exchanger and steam consumer is obtained.

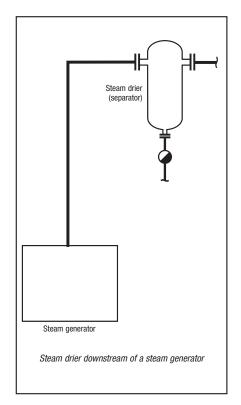
Application

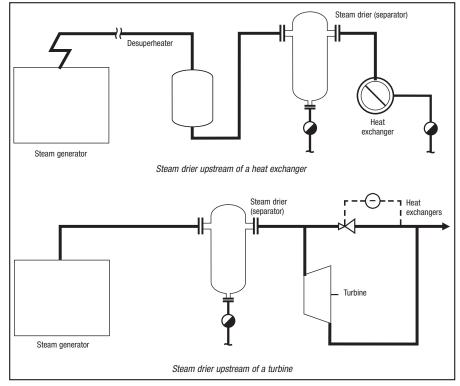
Downstream of steam boilers and steam-generating units.

Between boiler and superheater.

In steamlines ahead of steam manifolds.

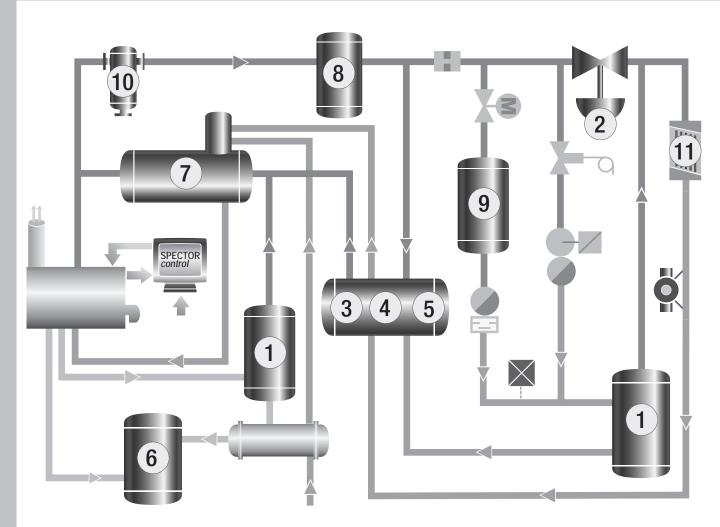
In district-heating lines and flash steam lines.


Upstream of turbines, steam engines, steam tools.


For direct heating with steam.

In spray-vapour humidifier systems for airconditioning plants.

Technical Data


Pressure rating	Nominal sizes DN	Materials
		P235GH
PN 16 PN 40 PN 63 PN 100 PN 160		S235JR+N
	15 to 500 mm	P265GH
		16 Mo 3
1 N 100		1.4571

٠ .

Gestra

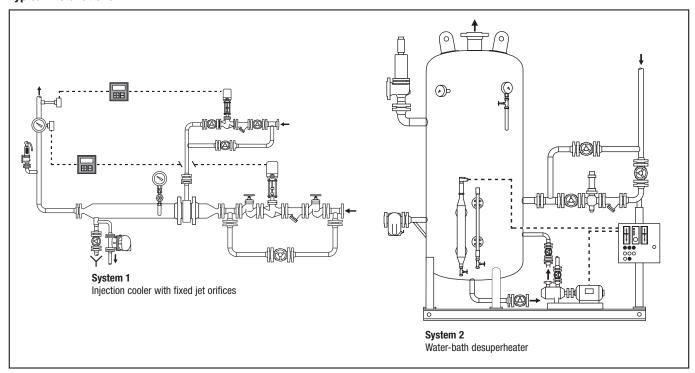
- 1. Flash vessel
- 2. Steam pressure reducing station
- 3. Condensate recovery and return system (rectangular type)
- 4. Condensate recovery and return system (cylindrical type)
- 5. Steam-powered condensate return unit
- 6. Blowdown receiver ("mixing cooler")
- 7. Feedwater deaerator
- 8. Water-bath desuperheater

Desuperheater: injection spray type

- 9. Steam regenerator
- 10. Steam drier TD
- 11. Heat exchanger

Condensate flowrate	. kg/h Sup	oply options:	
Condensate temperature	°C	Accessories detached	Accessories assembled and interconnected
Condensate pressure	` '		
Tank design: angular round horizontal vertical open c		idensate tank made of: Steel	
Condensate pumps:		Stainless steel grade 1.4 (X6 CrNiMoTi17-12-2)	¥571
Qty			
Discharge head	mWS		
Mains voltage			
Horizontal pump Uertical pump			
Typical Installations			
	n centrifugal ext to tank eceiver tank design type horizontal-type ump(s) installed design		Condensate tank of rectangular design type Quick CC with high-pressure centrifugal pump(s) installed next to tank

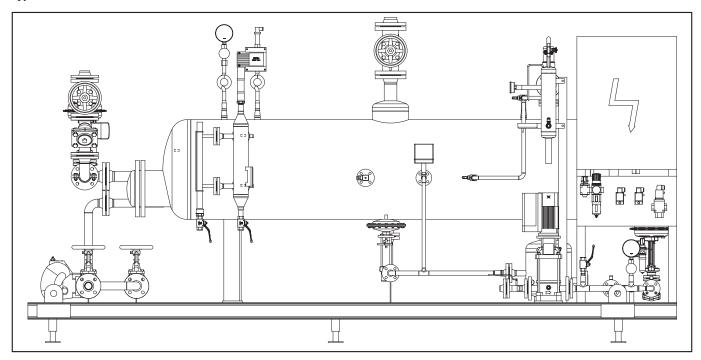
Your details


Total dotallo
Name/Title
Company Name
Telephone
Fax
E-mail
Date

٠ .

Reducing	of steam pressure	Cooling fluid:		
If yes,	yes no Self-acting control Electro-pneumatic	P ₄ bar/psi upstream of cooler if not fitted Water-bath desuperheater	t_4 °C upstream of cooler with pump	
Steam flov	wrate	•	_	
Steam pre	essure:	Injection cooler	$t_2 = t_s + > 5^{\circ}$ controllable	
P ₄	bara/psia upstream of pressure reducing station	Supply options for water-bath desuperheater:		
'	bara pola apolicam of pressure reducing station	Accessories detached	Accessories assembled	
P ₂	bara/psia downstream of pressure reducing and cooling station			
Steam ten	nperature:			
t ₁	°C upstream of pressure reducing station or when no more pressure reduction takes place up	ostream of cooling unit		
t ₂	°C downstream of pressure reducing and cooling station			

Typical Installations


Your details

Name/Title
Company Name
Telephone
Fax
E-mail
Date

Pure steam output	kg		
Service data (primary)			
Medium:	Steam	Hot water	
Pressure	_ bara/psia	Temperature On °C	
		Temperature Off°C	
Services data (secondary)			
Medium:	Steam	Feedwater	
Pressure	_bara/psia	Temperature°C	
Control (pressure side)	Self-acting	Pneumatic	
Feedwater control	Solenoid valve or	control valve	Feedwater pump
Application			

Typical Installation

Your details

Name/Title	
Company Name	
Telephone	
Fax	
E-mail	
Date	

C

Boiler capacity Make-up water flowrate Steam pressure Service pressure (deaerator)	kg/h Temperature approx°C bar(a)	
Make-up feed control	☐ Electric ☐ Pneumatic	
Pressure control	Self-acting Electric Pneumatic	
Typical Installation		
	Softened Personal mecton Thermoneter Condensate Tournell Indiana Softened Thermoneter Tournell Indiana Softened Tournell In	

Your details

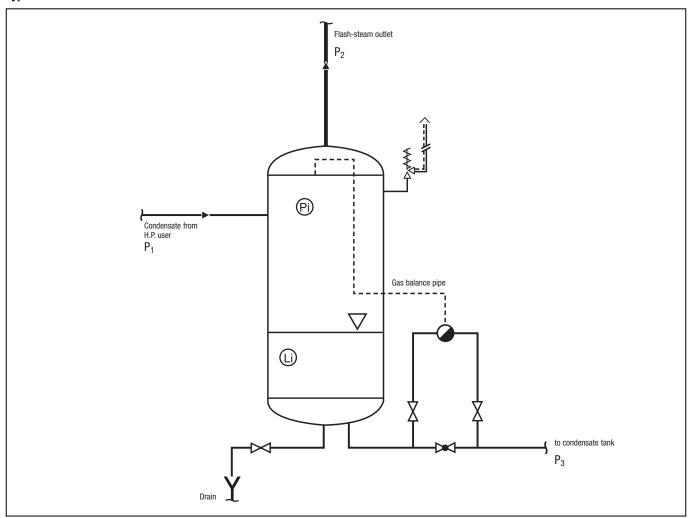
Name/Title			
Company Name			
Telephone			
Fax			
E-mail			
Date			

Pressure p₁ upstream of steam trap at steam user (boiler pressure at flash vessel)

Pressure p_2 of flash steam at flash outlet to low pressure system

Pressure p_3 downstream of steam trap after the flash vessel

Condensate flowrate to flash off


 $P_1 = \underline{\hspace{1cm}} bar(a)/psi(a)$

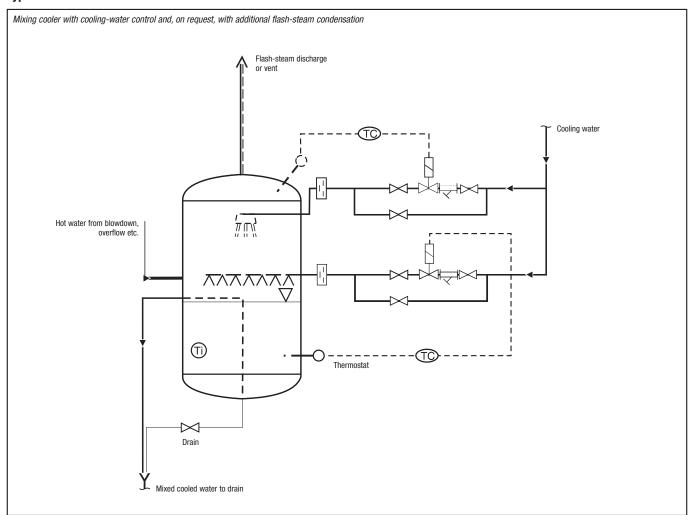
 $P_2 =$ bar(a)/psi(a)

 $P_3 =$ bar(a)/psi(a)

 $m = \underline{\hspace{1cm}} kg/h$

Typical Installation

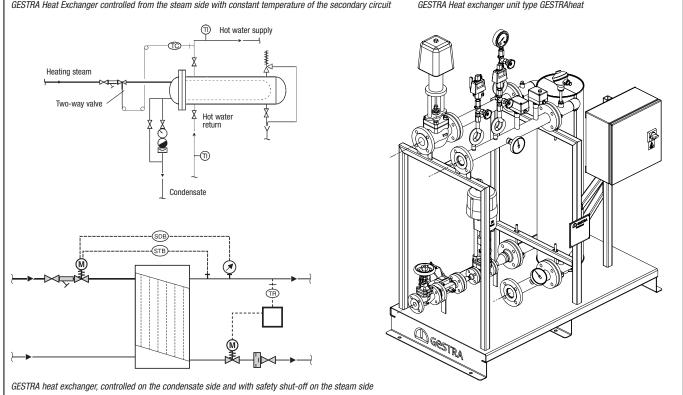
Your details


ioui ucialis	
Name/Title	
Company Name	
Telephone	
Fax	
E-mail	
Date	

٠.

Hot-water flowrate	_ kg/h	Material	
Hot-water temperature	°C	☐ Steel	Edelstahl 1.4571
Hot-water pressure	bar(a)	Application	
Cooling-water temperature	°C	Boiler blowdown	Other
Cooling-water pressure	bar(a)	Flash steam condens	sation

Typical Installation



Your details

Name/Title
Company Name
Telephone
Fax
E-mail
Date

Thermal ou	utput			Control Self-acting Electric
Service dat	ta (primary)			☐ Pneumatic
Medium:	Steam	_	Thermal oil	Controlled from the condensate side
Pressure	bar/psi	Temperature (in)°C Temperature (out)°C	-	Design horizontal tube bundle heat exchanger
Material:	Steel	Stainless steel (X 6 CrNiMoTi 17	•	vertical tube bundle heat exchanger GESTRA heat exchanger unit type GESTRAheat
Service dat	ta (secondary)			
Medium:	Steam	Hot water	Thermal oil	
Pressure	bar/psi	Temperature (in)°C Temperature (out)°C	-	
Material:	Steel	Stainless steel (X6CrNiMoTi 17	•	
Typical Ins	stallation	,	,	
GESTRA Hear	nt Exchanger controll	ed from the steam side with constant	temperature of the secondary c	circuit GESTRA Heat exchanger unit type GESTRAheat
		Hot water sup	ply	

Your details

Name/Title		
Company Name		
Telephone		
Fax		
E-mail		
Date		

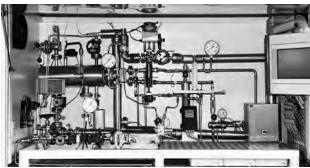
C

Medium:	☐ Saturated steam	Superheated steam	Air Ga	S
Flowrate:	m = kg/	h	$\dot{V}_N = \underline{\hspace{1cm}}$	_Nm³/h
Service pressure:	p = bar	a/psia		
Service temperature:	t =°C			
Admissible pressure:	p = bar	g/psig		
Approved temperature:	t =°C			
Connections:	Inlet/Outlet:	DN/PN		
	Condensate outlet:	DN/PN		
Material:	S235JRG2 (RSt 37-2)	P265GH (H II)	16 Mo 3	
	1.4571 (V4A)			

Your details

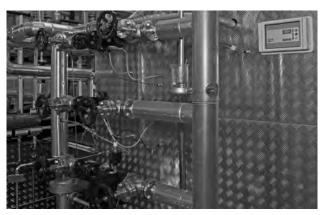
Name/Title	
Company Name	
Telephone	
Fax	
E-mail	
Date	

Acauciny	Page
Mobile Testing Station, See-Through Demo Facility	182
Tools for Design Engineers, Users & Operators	Page
Programs & Sizing Software	183
SESTRA Steam Traps & Valves Library CAD drawings	183
Documentation and Reference Literature	Page
GESTRA Condensate Manual	184
Brochures and Leaflets	184
echnical Infos	184
Oata Sheets, Installation and Operating Instructions	184
General Information	Page
nformation on ATEX Directive 2014/34/EU	185
nformation on Pressure Equipment Directive (PED) 2014/68/EU	186 – 189
Combined Imperial and S. I. Steam Tables	190 – 191
DIN Material Reference Chart	192
Design of GESTRA Valves	193
Search Index	Page
ndex by Product Name	194 – 196
ndex by Product Code	197 – 199



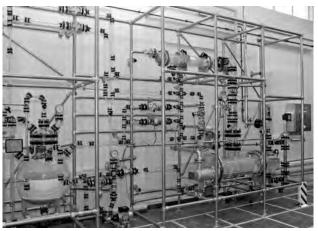
Our GESTRA Academy offers a broad portfolio of in-depth vocational training seminars for design engineers, consultants, manufacturers and operators. As part of the workshops there will be practical hands-on demonstrations at our state-of-the-art simulation facilities on site. Evaluating and understanding what is going on in a steam system helps preventing costly malfunctions and downtime.

Mobile Testing Station


Our mobile testing station is a testing, demonstration and training facility on wheels. We would be happy to send our mobile testing station together with our experienced support engineers to you in order to solve your operating problems directly on site and conduct training seminars on your premises. You provide steam, water and electricity and, by means of our mobile testing station, we provide a comprehensive and personalized workshop tailored to your specific requirements and focusing on steam and condensate systems.

Steam Trap Test Benches

Demonstration of up-to-date electronic monitoring equipment for steam traps up to 20 bar service pressure. The installation clearly illustrates the operational mode of the various systems.


Steam Boiler Demonstration Facility

This simulation facility provides the opportunity to demonstrate the newest and most effective boiler equipment. Design engineers, manufacturers and operators can observe different operating modes and simulations of in-service failures. Thanks to these demonstration sessions individuals gain the knowledge needed to prevent expensive failures and downtime.

See-Through Demo Facility

Our custom-built see-through demo facility makes thermodynamic processes in steam and condensate systems visible. The whole installation is completely made from glass and allows the spectators to see effects and properties otherwise hidden from the human eyes. This facility illustrates in a practical manner some of the more abstract concepts discussed during the workshops and seminars.

Please call us so that we can schedule a demonstration with our mobile testing station at your facility.

Telephone: +49 421 3503-218/-376

Sizing & Selection Software and Useful Tools for Steam Practitioners

For the following software tools go to www.gestra.com/resources

CAESar Steam trap selecting & sizing software (multilingual) www.gestra.com

Select by application or by type. Filter criteria: functional type, nominal pressure, end connection and material. Output with specification text and ordering details.

GESTRA CALCU*quick*

A software tool to help designers and steam practitioners calculate valve sizes and flow velocities and determine steam, condensate and pipe parameters.

GESTRA Steam Traps & Valves Library

To help you design and plan an installation we offer you our extensive library with CAD drawings.

GESTRA Condensate Manual

This handbook is intended for operators and users and illustrates typical applications encountered in steam and condensate systems, shows examples of installation and describes processes and equipment.

Brochures & Leaflets

For more detailed information on products, properties, designs, function and application.

Technical Infos

Answers are given to frequently asked questions regarding condensate lines, steam, boiler equipment, non-return valves and many more topics.

Data Sheets and Installation Manuals

Technical specification of our products, description of intended use and function. Information on design, installation, maintenance and safe operation. Available in many languages.

Please go to our website for more information:

www.gestra.com

Manufacturer's Declaration on the ATEX Directive (explosion protection)

European Directive 2014/34/EU (ATEX) governs the requirements for equipment that is operated in potentially explosive atmospheres. Here, the potentially explosive atmosphere is the surrounding atmosphere.

As of 20 April 2016, this European Directive has applied to the operation of electrical and non-electrical equipment in the EU member states.

The items of equipment named below have been inspected as regards their suitability for use in potentially explosive atmospheres in accordance with the above-mentioned Directive. The equipment does not have its own potential ignition source, in accordance with Annex II, section 1.3. Therefore, on the basis of paragraph 2, section (1), the Directive does not apply. According to paragraph 30 (2) of Regulation (EC) No. 765/2008, these items of equipment must not be labelled with the CE mark in relation to Directive 2014/34/EU. Neither do these items require a Declaration of Conformity as per 2014/34/EU.

When used for their intended purpose – described in the relevant GESTRA data sheets and Installation & Operating Manuals – and as they do not have their own potential ignition source, the items of equipment named below may be used in potentially explosive atmospheres.

The GESTRA items of equipment mentioned below, in the version without electrical or pneumatic attachments, are suitable for operation in the following zones: Zone 0, 1, 2 (gases). **Steam traps, steam trap accessories:**Type AK, BK, DK, IB, MK, SMK, TK, UBK, UC, UNA, VK **Mechanical control valves:**Type BW, CW **Special equipment and vessels for heat recovery:**Type TD, ED

The GESTRA items of equipment mentioned below are suitable for operation in the following zones: Zone 0, 1, 2 (gases) and Zone 20, 21, 22 (dusts)

Check valves:

Type BB, CB, MB, RK, SBO

Strainers:

Type SZ

Note: Some electrical and non-electrical items of equipment marketed by GESTRA and not mentioned here can be used in certain potentially explosive atmospheres. If you have any questions about using this equipment in potentially explosive atmospheres for your particular application, please contact us. Please note that certain items of GESTRA equipment have a Declaration of Conformity with other European directives, and therefore bear the CE mark. If necessary, you can find details in the relevant data sheets, Installation & Operating Manuals and Declarations of Conformity.

V. Bordes

Bremen, Juli 2021

Kerstin Borchers

Tim Kraeme

CE and UKCA Markings for GESTRA Series Equipment

luid group 2:	non-haza	rdous s	ubstan	poisonous, flar ces, e.g. water	, steam, air		Pressure CL	acc.	to n	ame	piate																		—	
marking yes	Module	luid Gr. 1	Gr. 2	Valve	Туре	Type no.	PN/CL	10/15	20	25	32	40	50	65	80	100	125	_	Size 200	·	_	350	400	450	500	600	700	800	900	1000 12
A1 – Stea	am Trap	S																												
			X	AK	45 ¹)	845	40	/	/	/																		Ш		
X	H		X	BK	15	716	40	H	\vdash	-	┞	V	V	⊢			┞					\vdash	_		\vdash			Н		\vdash
Х	Н		X	BK BK	15 15	716 716	CL300 CL150				├	1	1	H											\vdash			Н		
Х	Н		X	BK	27N ¹)	710	40	/	/	1	Н	•/		Н			┢								\vdash			\vdash	-	
					27N			,	,	' ,	Н	,					\vdash					\vdash			\vdash				\dashv	
Х	Н		Х	BK	(incl. Fl. CL400/600)	712	63		/	/		V	V												L			Ш		
			X	BK	28		100/CL600	/	/	/	_						_								ـــــــــــــــــــــــــــــــــــــــ			Ш		
			X	BK BK	29 36, 36A/7 (Swivel)	714, 871	160/CL900 40/CL300	/	/	/	H.,	V 2	G A /7	L.	l	unot	L_		LIC	(LIC)	<u>, </u>	-			⊬			$\vdash\vdash$	_	\vdash
					, ,	<u> </u>	63-100/	/	/	1	l la	N O	6A/7	III (JUIIJI	liici	lon	WILL	06/	061		\vdash		-	\vdash			\vdash	\dashv	
			Х	BK	37	719, 717	CL400/600	/	/	/	l																			
			Х	BK	45	708	40/CL300	/	/	/																				
			X	BK	46	711	40/CL300	/	/	/	╙			L			_								$oxed{igspace}$			Ш		\sqcup
			X	BK	212		630/CL2500	/	/	/	╙		_				<u> </u>								ـــــــــــــــــــــــــــــــــــــــ			Ш		\vdash
			X	DK	36A/7 (Swivel)	846	CL300	/	/	/	H			H			_							-	⊬			Н	_	\vdash
			X	DK DK	45 47,57	877 878,879	40 63/CL600	/	1	1	in	100	njund	ctio	ı wi	th U	C/UC	Ϋ́	\vdash			\vdash		\vdash	\vdash			\vdash	_	$\vdash \vdash$
Х	Н		X	GK	11	750	10/16	/	1	7	-			1	V	1	/ *	/ *	*1	DN	100) + 1	50 -	PN	10			\vdash	-	\vdash
	†		X	GK	21	750	16						/						۲		. 50					\vdash		\Box	-	\vdash
			X	MK	20	720	6	/	1	/																				
X	Н		Х	MK	25/2	729	40					1	V															П		
Χ	Н		X	MK	25/2	729	CL300					V	~	$oxedsymbol{oxed}$											\perp			Ш	_]	\Box
nn.			X	MK	25/2	729	CL150			1.		/	/	\vdash	\vdash	_	\vdash			_		_		_	₩	_		$\vdash \vdash$		$\vdash \vdash$
(X)	H		X	MK	25/2\$	734 734	40	\vdash	\vdash	/	⊢	V	<i>V</i>	⊢			├				H	\vdash			\vdash			$\vdash\vdash$	_	
(X)	Н		X	MK MK	25/2S 25/2S	734	CL300 CL150		\vdash	/	Н	1	1	Н			├					\vdash			\vdash			\vdash	\dashv	
			X	MK	36A/7 (Swivel)	846	CL300	/	/	1	Н	/	'	Н			┢								\vdash			\vdash	-	
			X	MK	35/2S	735	40/CL300		<u> </u>	1	ir	CO	njun	ctio	n wi	th U	C/U	CY							\vdash			\Box	\neg	
			Χ	MK	35/2S3	736	40/CL300			1	<u> </u>		ĺ	r	epla	ces	MK :	25/2	S	DN 2	25 (734)								
			X	MK	35/3	724	25	/	/					r	epla	ces	MK:	25/2	S 3	DN 2	25 (740)								
			X	MK	36/51	749	-	/	/	L.															╙			Ш		\sqcup
			X	MK	37/1	881	63	/	/	/	⊢		_									-			⊢			Ш		
			X	MK NRG	45/45A ¹) 16-19, -27, -28	725 053	40 40	/	/	/	⊢		-	H			 					-		-	\vdash			\vdash	_	
			X	SMK	22	885	10	/	/	1	Н						┢					\vdash		\vdash	\vdash			H	\dashv	
(X)	Н		X	TK	23	742	16	,	,	,			1	1	V	V									\vdash			\Box	\neg	
X	Н		Х	TK	24	743	25				İ		1	V	V	V								İ				П	\neg	
	Н		X	TS	36	849	CL300	/	/	/																				
			X	UBK	46 ¹)	886	40	/	/	/															L			Ш		
			X	UC, UCY	Universal Connector	847	CL300	/	/	/	╙			_			L	_		_	<u> </u>	┡	_		╙	_		Ш		
			X		14 (inkl. CL150)	851, 852	25	/	/	/	H			H			<u> </u>					\vdash		-	⊬			Н	_	\vdash
		X	X	UNA UNA		853, 854	25 40/CL150	/	/	/	H														\vdash			Н		
		X	X		16A Stainless steel			1	1	1			+	\vdash	\vdash		\vdash				\vdash	\vdash	\vdash	\vdash	+	\vdash		\vdash	-	\vdash
			X		25-PK, 25-PS	794, 795		7	1	1		/		H	\vdash		H							\vdash	\vdash			\Box	-	\vdash
Х	Н		X		25-PK, 25-PS	794, 975	40					~		Г	İ		İ								I			П		
(X)	Н	Х	х	UNA	27h	820	63			1		V	1																	
		X			(incl. Fl. CL400/600)	820	CL300			1		~	<i>\</i>	\vdash			\vdash		\vdash		\vdash		\vdash		\vdash	_		$\vdash \vdash$	_	\vdash
(X)	H	X	X	UNA UNA		791, 792	100	1		1		V	_	\vdash			\vdash		\vdash					\vdash	+			\vdash	-	\vdash
(X)	H	X	X	UNA		814	160	1		1		_	V	\vdash										\vdash	+			\vdash	-	\vdash
(X)	Н.	X	X		39 (incl. Fl. CL600)	814	100	/		1			~	Т							\vdash	T			\vdash			\sqcap	\neg	\vdash
·/	Н		Х	UNA		829, 831	16/CL125								V	V		v											\exists	
(X)	Н		X	UNA	45, 45 MAX	823, 824	16/CL150	/	/	/		/	/	1	Г															
(X)	Н		X		45, 45 MAX		40/CL300	/	1	1		V		V			Ĺ		Ĺ		Ĺ				\vdash			Ц		Щ
(X)	H	X	X		46, 46 MAX	825, 826		/	1	1	<u> </u>	V	_	V	_	_	<u> </u>	V				1	_		\vdash			\sqcup		$\vdash \vdash$
(X)	Н	X	X		46, 46 MAX	825, 826		1	1	1	\vdash	1	/	V	V	V	\vdash	V	L		\vdash	-	\vdash	\vdash	\vdash	_		$\vdash \vdash$	_	$\vdash \vdash$
(X)	H	X	X		46 A, 46 A MAX 46 A, 46 A MAX	827, 828 827, 828	40/CL300 CL150	1	1	1	\vdash	1	1	V	\vdash		\vdash	\vdash	\vdash	-	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash		\vdash	-	\vdash
(X) X	H	^	Х		Special Typ 62	800	16	7	-	1		1	1	V	V	1	\vdash		H	\vdash		1		\vdash	+			\vdash	\dashv	\vdash
X	H	Х	X		Special Typ 02	801	25						1	1											\vdash			\vdash	-	\vdash
X	H	X	X		PN 25	801	25								1	V	Н							\vdash	\vdash			\vdash	-	\vdash
X	Н	X	Х		Special	804	63							V														П	\neg	\sqcap
Х	Н	Х	Χ	UNA	Special	804	40							1	V															
			Х	VK		041	16	/	/	/		/	/	\Box											\perp			Ш		П
(X)	Н		X		16¹)	042	40	/	1	1		'	V	\vdash					\vdash		\vdash	1			₩			Щ		\vdash
			X		16 16-1, 26	042 048	CL150 40	1	1	1		1	/	\vdash	_	_	\vdash		\vdash		\vdash	\vdash	-	_	\vdash	<u> </u>		$\vdash \vdash$	_	$\vdash \vdash$

1) incl. Fl. CL300

= CE and UKCA

CE and UKCA Markings for GESTRA Series Equipment

				poisonous, flam nces, e.g. water,			Pressure CL	acc.	to na	me p	olate																		_	
marking yes	Module	luid	ر م ا	Valve	Туре	Type no.	PN/CL	40/45	00	or.	L	40	50	0.5		100	Line	Т	ze (E	Ė		Loro	400	450	L 500		700	000	000	1000
A2 – Che			ui. Z					10/15	20	25	32	40	50	65	80	100	125	100	200	250	300	350	400	450	500	600	700	800	900	1000
	H H	т —	Х	BB	104 / 204 / 204	149	10	_			Г																			
X	Н	X	\vdash		12A / 22A / 32A 14A / 24A / 34A		10 16	_			_		V	V	V	V	V	V	V	V	V	V	V	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	V			$\vdash\vdash$	Н	\vdash
		X	X	BB		149					_		V	V	V	V	V	V	V	V	V	V	V	<i>V</i>	V			$\vdash\vdash$	Н	Н
X	H	X	X	BB	15A / 25A / 35A	149	25/CL150	_					V	<i>V</i>	V	V	V	•	V	V	•	V	V		V	H		$\vdash\vdash$	Н	\vdash
X	H	X	X	BB	16A / 26A / 36A	149	40/CL300	_					~	V	~	V	V	•	V	V	V	V	V	V	V			$\vdash\vdash$	Н	\vdash
X	Н	X	X	BB	17A	149	63 100/CL600	Ь.	1 R	R NI	N- 8	. AS	MF	_	Ή	V	<i>V</i>	•	V	V	V	V	V	H	~	H		$\vdash\vdash$	$\vdash\vdash$	\vdash
X	H	X	X	BB	18A	149					00 =			80"	-	V	V	•	V	V	V	~	~		~			$\vdash\vdash$	Н	\vdash
X	Н	X	X	BB	19A	149	160/CL900	Щ	([)N 7	50)					1		V	V	V	V		1					$\vdash\vdash$	$\vdash\vdash$	<u> </u>
X	Н	X	X	BB	12C / 22C / 32C	143	10						•	<i>V</i>	V	V	V	•	V	V	V	V	V	V	V			\square	$\vdash\vdash$	<u> </u>
X	Н	X	X	BB	14C / 24C / 34C	143	16				<u> </u>		V	•	V	<i>V</i>	V	•	V	V	V	V	V	~	V	H		\square	$\vdash\vdash$	\vdash
X	H	X	X	BB	150 / 250 / 350	143	25/CL150	_			\vdash		V	V	V	V	V	V	V	V	V	V	V		V	\vdash		$\vdash \vdash$		\vdash
X	H	X	X	BB	16C / 26C / 36C	143	40/CL300				_		V	V	V	V	V	V	V	V	V	V	V	V	V	\vdash		$\vdash \vdash$	\vdash	\vdash
X	H	X	X	BB	17C	143	63	_			_					V	V	V	V	V	V	~	V		~	\vdash		$\vdash \vdash$		\vdash
X	H	X	X	BB	18C	143	100/CL600	_			_					V	V	V	V	V	V	~	~		~	-		$\vdash \vdash$	$\vdash \vdash$	\vdash
X	H	X	X	BB	19C	143	160/CL900	_									L	•	V	V	V									
(X)	Н	-	X	BB	11G / 21G	140	6	_			_						L	/	V	V	V	V	V	V	V	V	V	~	V	•
X	H	-	X	BB	12G / 22G	140	10										_	~	V	V	V	V	V	V	V	V	V	V	•	~
X	H	-	X	BB	14G / 24G	140	16											V	V	V	V	~	V	~	V	V	V	V	~	V
(X)	Н	_	X	СВ	14	138	16	_			<u> </u>		/	~	V	~	~	~	V	V	~							Ш		\vdash
(X)	Н	ļ.,	X	СВ	24S	132	16				_		/	V	V	V	V	~	V	V	V	L						Ш	Ш	
Х	Н	X	X	СВ	26	133	40				_		'	V	V	V	V	~	V	V	V	L						Ш	Ш	Ш
Х	Н	X	X	СВ	26a	134	40				L		~	V	'	V	~	~	V	~	~	L						Ш	Ш	Ш
		<u> </u>	X	MB	14	091	16	/	/	/	/	/	/															Ш	Ш	
Х	Н	X	X	NAF-Check	526520/530 528520/530	448	25														V	~	~	~	~					
Х	Н	X	X	NAF-Check	526620/630	448	40					~	'	~	1	~	V	~	1	~									Ш	
Х	Н	X	X	NAF-Check	526822/832	448	100							v	V	'	~	1	'	~	'	•	'						Ш	
(X)	Н	X	X	RK	16a	118	40/CL300	/	/	/	1	v	'	v	'	'														
(X)	Н	X	X	RK	16b	124	40	/	/	/	1	v	•	v	'	'														Ш
(X)	Н	X	X	RK	16c	117	40	/	/	/	~	•	'	1	1	1														
(X)	Н	X	X	RK	16t	125	40	1	1	/	~	v	v	v	V	'	L												Ш	
(X)	Н	X	X	RK	26a	114	40	1	1	/	~	v	v	v	V	'	L												Ш	
(X)	Н	X	X	RK	29a	109	160/CL	1	1	/	~	v	v	v	V	'	~	1	1										Ш	
(X)	Н		X	RK	41	102	16	1	1	/	~	v	v	v	V	'	~	1	1										Ш	
(X)	Н	X	X	RK	44	103	16	1	1	/	~	v	v	v	V	'	~	1	1										Ш	
(X)	Н		X	RK	44s	110	16	/	/	/	/	/	/	1	1	1	1	~	~											
(X)	Н	X	X	RK	49	107	160	1	1	/	~	v	~	1	~	1												\square		
(X)	Н		X	RK	70	095	6	1	1	/	1	1	1	1	1	1	/	/	•									\square		$oxed{oxed}$
(X)	Н		X	RK		100	16	1	1	1	1	1	1	v	~	1												Ш		Ш
(X)	Н	X	X	RK		120	40	/	1	/	v	v	~	1	v	1	L											\sqcup		
(X)	Н	X	X	RK	86	101	40/CL300	1	1	/	v	v	v	1	~	v	V	1	V									\square		
(X)	Н	Х	X	RK	86a	121	40/CL300	/	/	/	~	~	~	v	'	v	V	~	•									\Box		
			х	SB0	11, 21, 31	086, 088, 090	6			/	/																			
✓ = CE ar	مط ۱۱۱۷۲	\ \ \		I	1 ~ .	555								_								1	_	1				Ш		ш

 $[\]checkmark$ = CE and UKCA

EU: Pressure Equipment Directive 2014/68/EU, CE marking, exemption according to Article 4(3)

UK: Pressure Equipment (Safety) Regulation 2016 no. 1105, UKCA marking, exemption according to Regulation 8.

CE and UKCA Markings for GESTRA Series Equipment

Fluid group 1: Fluid group 2:	hazardous non-hazar	s subst rdous s	ances, p ubstanc	ooisonous, flar ces, e.g. water	nmable ; steam, air		Pressure CL	acc.	to na	ıme	plate)																		
marking	F	luid		Valve	Туре	Type no.	PN/CL												Size	(DN)										
yes	Module	Gr. 1	Gr. 2	Valve	турс	Type IIU.	I II/OL	10/15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400	450	500	600	700	800	900	1000 120
A4 – Self	Acting	Tem	perat	ure & Pres	ssure Controller			_			_			_																
(X)	Н		Х	5801		270	16	/	/	/	/	/	/	~	~	'	1	~	1											
(X)	Н		Х	5801		270	25	/	/	/	1	'	v	v	'	1	1	'	'									Ш		
(X)	Н		X	5801		272	40	/	/	/	/	'	v	v	v	V	V	v	v									Ш		\perp
(X)	Н		X	5801		273	40	/	/	/	/	~	~	v	v	V	1	'	'									Ш		\perp
(X)	Н		X	5610		274	16	/	/	/	/	/	/	v	v	'														
(X)	Н		X	5610		274	25	/	/	/	/	'	•	~	'	'														
(X)	Н		X	5610		275	40	/	/	1	1	v	v	'	'	'														
			Х	BW	31	032	25+40+CL150	/	/	1		/	D	N 1	5-25	5 = I	PN 4	0 a	s fro	m 2	002	L								
(X)	Н	X	Х	BW	31A	033	25+40	/	/	/		'	D	N 1	5-25	5 = I	PN 4	0 a	s fro	m 2	002									
(X)	Н	X	Х	BW	31A	033	CL150	/	/	/		~																		
			X1)	CW	41	035	16			/		/	/		1	/	Ĺ													
		X1)	X1)	CW	41/4	035	16			/		/	/		1	/														
			Х	CW	44	036	25	/	/	/																				
		X	Х	CW	44k	036	25	/	/	/																				
			X	Clorius	L1S	235	16	/	/	/																				
			Х	Clorius	L2S	235	16		/	/	/	/	/																	
			Х	Clorius	L2SR, L3S	235, 239	16	/	/	/	/	/	/																	
(X)			Х	Clorius	L3F	239	10							/	/	/	V													
			Х	Clorius	M1F	236	16	/	/	/	/	/	/																	
(X)			X	Clorius	M1FBN	236	16			/	/	/	/	1	'															
(X)			X	Clorius	M2F	236	16		/	/	/	/	/	1	'	'	1	'												
(X)			X	Clorius	M2FR	236	16				/	/	1	1	1	1	V	V												
(X)			X	Clorius	M3F	239	16			1	1	/	1	1	1	1	V	V												
(X)			X	Clorius	M3F/M3FM	239	10								1	/	v	'												\perp
(X)			X	Clorius	H1F	237	40	/	/	/	/	v	v																	\perp
(X)			Х	Clorius	H1FBN	237	40			/	/	v	v	v	1															\perp
(X)			Х	Clorius	H2F	237	40			/	/	v	v	~	1	1	1	'												\perp
(X)			Х	Clorius	H2FR	237	40			/	/	'	~	1	V	v	V	1												
(X)			Х	Clorius	H3F	239	40			/	/	~	'															Ш		\perp
(X)			Х	Clorius	G1F	238	25	/	/	/	/	/	'															Ш		\perp
(X)			Х	Clorius		238	25			/	/	/	~																	
(X)			Х	Clorius	G2F	238	25		/	/	/	/	~															Ш		\perp
(X)			Х	Clorius	G2FR	238	25			/	/	/	~																	
(X)			Х	Clorius	G3F	239	25			/	/	/	~																	
			х	Clorius	2.05, 4.03, 4.05, 4.10, 8.09, 8.18	245				/	1	/																		
A4 – Con	trol Valv	/es																												
(X)	Н	X	Х	GCV			40	/	/	/	~	~	~	~	~	~	~	~												
(X)*	A1, H		Х	ZK		754	40 - 160			/	/	~	~	~	~	1		~												
(X)	A1, H		Х	ZK	210	013, 393	250			/	/		~	~	~															
(X)	A1, H		Х		213		_						~	~	~	~	~	~	~	~	~									
(X)*	A1, H		Х		313	757	_			/	/	~	~	~	~	~	•													
(X)	A1, H		Х	ZK	610, 613		-						V	1	1	1	V	~	~	~	~	~	~							
1) for liquid	d fluide	only																												

¹) for liquid fluids only ✓ = CE and UKCA

EU: Pressure Equipment Directive 2014/68/EU, CE marking, exemption according to Article 4(3)

UK: Pressure Equipment (Safety) Regulation 2016 no. 1105, UKCA marking, exemption according to Regulation 8.

CE and UKCA Markings for GESTRA Series Equipment

Fluid group 1 Fluid group 2	: hazardo : non-haz	us subs ardous	tances substa	, poisonous, flai nces, e.g. water	mmable r, steam, air		Pressure C	L ac	c. to	nam	ne pl	ate																		
marking			0.0	Valve	Туре	Type no.	PN/CL			T	Γ	T	T	T	T		I			_										
-			Gr. 2					10/15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400	450	500	600	700	800	900	1000 12
		V69	Y	GSV	1121	300					1./					./			./											
		v						•		./			11		11	./		•	•	_			_	Н				Н	\dashv	
	Part Part																													
	Provided Provided																													
			^	dov	7717	300				М	М	М	М	М																
			X*)	GSF	11 14	431	6 - 16*	1	/	1	1 /	1	1	<i>\</i>	1	<i>\</i>	<i>\</i>	<i>\</i>	<i>\</i>	<u>/</u>	1	*) lia	nids	m	ny 1	O h	ar		
		X	-					1	1	1			<i>\</i>		<i>\</i>	<i>\</i>	<i>\</i>	<i>'</i>	<i>'</i>			1	,q		,		0 5		\dashv	
								1	1	1	,		<i>\</i>	М														Н	\dashv	
					· · · · · · · · · · · · · · · · · · ·			1	1	1	1	1	/	/	~	1	1	1	V	1	1			Н				Н	\dashv	
									_	<u> </u>	Ė	<i>\</i>	~	·	~	·	<i>\</i>	·	·					Н				П	\dashv	
	Processed teat and continue to the continue																													
					26 665 6645	415	40/25	,	,	Ι,									. /*			*\		Αν.	CCE			П		
								1	7	1	ľ	V	ľ	ľ	ľ	_	Ľ		'			ניי	= u	AV	JUF	Щ		Ш		\perp
(X)								/	/	/	~	~	V	1	1	1	V	~	'	1				Ш		Щ		Ш		\perp
						444		/	/	1	/	/	1	/	/	1	1	/	1									Ш		
							-	/	/	/	~	'	~	L														Ш		\perp
								/	/	/	~	V	~	L			L							Ш				Ш		
	The part The part																													
(X)	Н	X				-		/	/	/	L	V	~	L	~	V		'	'	V								\sqcup	_	\perp
										L	L	L	/	L														\sqcup	_	\perp
								/	/	/	L	~	L	L														\sqcup	_	\perp
(X)	Н							/	/	/	L	~	Н	L														Ш	_	
						_		/	/	1	L	/		L														Ш	_	
										/	L	-	-	L														Ш	_	\perp
										/	L.																	\square	_	
(X)	Н								/	/	/	V	~	L														\square	_	
									/	/	/	/	/	L														\square	_	
					, ,				/	/	/	V	~	L														$\vdash \vdash$	_	\perp
						-			/	/	/	L		L														$\vdash \vdash$	_	\perp
(X)	Н								/	/	/	V	~	L														$\vdash \vdash$	_	\perp
			Х	PA / MPA			250			/	L		_	┞														$\vdash \vdash$	_	\perp
Х	B+D	-	-	NRG	1x-40/41 + NRS 1-40/41		40-160		~																					
Х	B+D	_	-	TRG				V	~																					
Х	B+D	-	-	LRGT	LRR 1-5x, 16-4/		40			~																				
Х	B+D	_	-	NRG	,		40-160			~																				
Х	B+D	-	-	NRG			40			~																				
X	B+D	_	_	LRG			40			~																				
Х	Н		X	NRG	211	350	320						1	Г																
C – Heat	Recov	ery S	yste	ms & Vess	els																									
Х	A1, G	(X)	X		Vessels		Х	Fo	r m	ore	info	rma	ation	ı se	e Pri	ice L	ist													T
✓ = CF !!		Principal content Principal Content Prin																												

on request

(X)* on request

(X) CE-marking depending on size

Based on GESTRA standard types.

✓ Is declared conform

Not part of GESTRA product range

/ Not covered by the Pressure Equipment Directive or must not bear this mark

Ga	uge	Abso	olute	Satur	ation		Specific	Enthalpy		Spe	cific
_	ssure	Pres		Tempe	erature	Water	Evaporation	Water	Evaporation	Volume	Steam
hava		hous		t °C		Sensible heat (h _f)	Latent heat (h _{fg})	Sensible heat (h _f)	Latent heat (h _{fg})		/g . #3//L
bar g - 0.96	psi g 28.4	bar a 0.05	psi a 0.725	32.9	°F 91	KJ/kg 138	kJ/kg 2423	Btu/lb 59	Btu/lb 1042	m ³ /kg 28.2	ft ³ /lb
- 0.91 - 0.86	27.0 25.5	0.1 0.15	1.45 2.18	45.8 54.0	114 129	192 226	2392 2373	82 97	1029 1020	14.7 10.0	236 160
- 0.81 - 0.76	24.0 22.5 21.1	0.2 0.25	2.90 3.63	60.1 65.0	140 149	251 272	2358 2346	108 117	1014 1009	7.65 6.20	123 99.3
- 0.71 - 0.66	🐆 19.6	0.3 0.35	4.35 5.08	69.1 72.7	156 163	289 304	2336 2327	124 131	1004 1000	5.23 4.53	83.8 72.6
- 0.61 - 0.56	8 18.1 - 16.6 - 15.1	0.4 0.45	5.80 6.53	75.9 78.7	169 174	318 330	2319 2312	137 142	997 994	3.99 3.58	63.9 57.3
W - 0.51 - 0.46 - 0.41	NACUUM 16.6 15.1 13.7 12.2 10.7	0.5 0.55	7.25 7.98 8.70	81.3 83.7 85.9	178 183 187	341 351 360	2305 2299 2294	147 151 155	991 988 986	3.24 2.96 2.73	51.9 47.4 43.7
- 0.36 - 0.31	5 12.2 8 10.7 9.24	0.6 0.65 0.7	9.43 10.2	88.0 90.0	190 194	369 377	2288 2283	159 162	984 982	2.73 2.54 2.37	40.7 40.7 38.0
- 0.26 - 0.21	를 7.77	0.75 0.8	10.9 11.6	91.8 93.5	197 200	384 392	2279 2274	165 169	980 978	2.22	35.6 33.5
- 0.16 - 0.11	<u>8</u> 4.81 ⊢ 3.34	0.85 0.9	12.3 13.1	95.1 96.7	203 206	399 405	2270 2266	172 174	976 974	1.97 1.87	31.6 30.1
- 0.06 - 0.01	1.86 0.38	0.95 1.0	13.8 14.5	98.2 99.6	209 211	411 418	2262 2258	177 179	972 971	1.78 1.69	28.5 27.1
0 0.1	0 1.45	1.013 1.11	14.696 16.1	100 103	212 217	419 430	2257 2250	180 185	970 967	1.67 1.53	26.8 24.5
0.2 0.3	2.90 4.35	1.21 1.31	17.5 19.0	105 107	221 225	441 450	2243 2237	190 194	964 962	1.41 1.31	22.6 21.0
0.4 0.5	5.80 7.25 8.70	1.41 1.51	20.5 21.9	110 112 114	230 234	460 468	2231 2226	198 201	959 957	1.23	19.7 18.4
0.6 0.7 0.8	10.2 11.6	1.61 1.71 1.81	23.4 24.8 26.3	114 115 117	237 239 243	476 484 492	2220 2215 2211	205 208 212	954 952 951	1.08 1.02 0.971	17.3 16.3 15.6
0.9 1.0	13.1 14.5	1.91 2.01	27.7 29.2	119 120	246 248	499 506	2206 2201	215 218	948 946	0.923 0.881	14.8 14.1
1.1 1.2	16.0 17.4	2.11 2.21	30.6 32.1	122 123	252 253	512 519	2197 2193	220 223	945 943	0.841 0.806	13.5 12.9
1.3 1.4	18.9 20.3	2.31 2.41	33.5 35.0	125 126	257 259	525 531	2189 2185	226 228	941 939	0.773 0.743	12.4 11.9
1.5 1.6 1.7	21.8 23.2 24.7	2.51 2.61 2.71	36.4 37.9 39.3	128 129 130	262 264 266	536 542 547	2181 2177 2174	230 233 235	938 936 935	0.714 0.689 0.665	11.4 11.0 10.7
1.7 1.8 1.9	26.1 27.6	2.71 2.81 2.91	40.8 42.2	131 133	268 271	552 557	2170 2167	237 240	933 932	0.643 0.622	10.3 9.96
2.0 2.2	29.0 31.9	3.01 3.21	43.7 46.6	134 136	273 277	562 572	2163 2157	242 246	930 927	0.603 0.568	9.66 9.10
2.4 2.6	34.8 37.7	3.41 3.61	49.5 52.4	138 140	280 284	581 589	2151 2145	250 253	925 922	0.536 0.509	8.59 8.15
2.8 3.0	40.6 43.5	3.81 4.01	55.3 58.2	142 144	288 289	597 605	2139 2133	257 260	920 917	0.483 0.461	7.74 7.38
3.2 3.4 3.6	46.4 49.3	4.21 4.41 4.61	61.1 64.0 66.9	146 147 149	293 297 298	613 620 627	2128 2123 2118	264 267 270	915 913 911	0.440 0.422 0.405	7.05 6.76 6.49
3.8 4.0	52.2 55.1 58.0	4.81 5.01	69.8 72.7	150 152	302 304	634 641	2113 2108	273 276	911 908 906	0.389 0.374	6.49 6.23 5.99
4.2 4.4	60.9 63.8	5.21 5.41	75.6 78.5	153 155	307	647	2104 2099	278 281	905 902	0.361 0.348	5.78 5.57
4.6 4.8	66.7 69.6	5.61 5.81	81.4 84.3	156 158	309 313 315 316	653 659 665 671	2104 2099 2095 2090 2086	283 286	901 899 897	0.361 0.348 0.336 0.325 0.315	5.78 5.57 5.38 5.21 5.01
5.0 5.5 6.0	72.5 79.8	6.01 6.51 7.01	87.2 94.4 102	159 162	324	685 698	2086 2076	289 295 300	893	0.315	4.68
6.5 7.0	87.0 94.3 102	7.51 7.51 8.01	109 116	165 168 171 173	324 329 333 338 343	l 710 l	2076 2066 2057 2048 2039	305 310	888 884 880 877	0.292 0.272 0.255 0.240 0.227	4.68 4.36 4.09 3.84 3.64
7.5 8.0	109	8.51 9.01	123 131	173 175	343 347	721 733 743	2039 2031	315 319	877 873	0.227 0.215	3.64 3.44
8.5 9.0	123 131	9.51 10.0	138 145	175 178 180	347 351 354	753 763	2031 2023 2015	324 328	873 870 866	0.215 0.204 0.194 0.185 0.177	3.44 3.27 3.11 2.96 2.84
9.5	138 145	10.5 11.0	152 160	182 184	360 363	773 782	2008 2000	332 336	863 860	0.185 0.177	2.96 2.84
10.5 11.0 11.5	152 160 167	11.5 12.0 12.5	167 174 181	186 188 190	367 370 374	790 798 807	1993 1986 1070	340 344 347	857 854 851	0.171 0.163 0.157	2.74 2.61 2.51
12.0 12.5	174 181	13.0 13.5	189 196	190 192 193	376 379	815 823	1993 1986 1979 1973 1966	350 354	848 845	0.163 0.157 0.151 0.146	2.61 2.51 2.42 2.34
13.0 13.5	189 196	14.0 14.5 15.0	203 210	195 197	383 385 388	830 838 845 852 859	1960 1953 1947 1941 1935	357 360	843 840 837 834 832	0.141 0.136 0.132 0.128 0.124	2.26 2.18 2.11 2.05 1.99
14.0 14.5	203 210	15.5	218 225 232	198 200	388 392 394	845 852	1947 1941	363 366	837 834	0.132 0.128	2.11
15.0 15.5 16.0	218 225 232	16.0 16.5 17.0	232	202 203 204	394 397 399 401	866	1935	369 372 375	832 829 827	0 120	1.99
16.0 16.5 17.0	232 239 247	17.0 17.5 18.0	239 247 254 261	203 204 205 207	405	872 879 885	1929 1923 1918 1912 1907	372 375 378 381	827 824 822	0.117 0.114 0.110	1.92 1.87 1.83 1.76 1.73
17.5	254	18.5	268	209	408	891	1907	383	820	0.108	1.73

 $^{14.5 \}text{ psi} = 1 \text{ bar}$

Gai	uge	Abso	olute	Satu	ation		Specific	Enthalpy		Spe	
Pres	sure	Pres	sure		erature s	Water Sensible	Evaporation Latent	Water Sensible	Evaporation Latent	Volume V	
bar g	psi g	bar a	psi a	°C	°F	heat (h _f) KJ/kg	heat (h _{fg}) kJ/kg	heat (h _f) Btu/lb	heat (h _{fg}) Btu/lb	m³/kg	ft³/lb
18.0	261	19.0	276	210	410	897	1901	386	817	0.105	1.68
18.5	268	19.5	283	211	412	903	1896	388	815	0.103	1.65
19.0	276	20.0	290	213	415	909	1890	391	813	0.100	1.60
19.5	283	20.5	297	214	417	915	1885	393	810	0.0972	1.56
20.0	290	21.0	305	215	419	920	1880	396	808	0.0949	1.52
21.0	305	22.0	319	217	423	931	1870	400	804	0.0906	1.45
22.0	319	23.0	334	220	428	942	1860	405	800	0.0868	1.39
23.0	334	24.0	348	222	432	952	1850	409	795	0.0832	1.33
24.0	348	25.0	363	224	435	962	1841	414	792	0.0797	1.28
25.0	363	26.0	377	226	439	972	1831	418	787	0.0768	1.23
26.0	377	27.0	392	228	442	982	1822	422	783	0.0740	1.19
27.0	392	28.0	406	230	446	991	1813	426	779	0.0714	1.14
28.0	406	29.0	421	232	450	1000	1804	430	776	0.0689	1.10
29.0	421	30.0	435	234	453	1009	1796	434	772	0.0666	1.07
30.0	435	31.0	450	236	457	1017	1787	437	768	0.0645	1.03
31.0	450	32.0	464	238	460	1026	1779	441	765	0.0625	1.00
32.0	464	33.0	479	239	462	1034	1770	445	761	0.0605	0.97
33.0	479	34.0	493	241	466	1042	1762	448	758	0.0587	0.94
34.0	493	35.0	508	243	469	1050	1754	451	754	0.0571	0.915
35.0	508	36.0	522	244	471	1058	1746	455	751	0.0554	0.887
36.0	522	37.0	537	246	475	1066	1737	458	747	0.0539	0.863
37.0	537	38.0	551	247	477	1073	1730	461	744	0.0524	0.839
38.0	551	39.0	566	249	480	1080	1722	464	740	0.0510	0.817
39.0	566	40.0	580	250	482	1087	1714	467	737	0.0498	0.798
40.0	580	41.0	595	252	486	1095	1706	471	733	0.0485	0.777
41.0	595	42.0	609	253	487	1102	1699	474	730	0.0473	0.758
42.0	609	43.0	624	255	491	1108	1691	476	727	0.0461	0.738
43.0	624	44.0	638	256	493	1115	1684	479	724	0.0451	0.722
44.0	638	45.0	653	258	496	1122	1676	482	721	0.0441	0.706
45.0	653	46.0	667	259	498	1129	1669	485	718	0.0431	0.690
46.0	667	47.0	682	260	500	1135	1662	488	715	0.0421	0.674
47.0	682	48.0	696	261	502	1142	1654	491	711	0.0412	0.660
48.0	696	49.0	711	263	505	1148	1647	494	708	0.0403	0.646
49.0	711	50.0	725	264	507	1155	1640	497	705	0.0395	0.633
50.0	725	51.0	740	265	509	1161	1633	499	702	0.0386	0.618
52.0	754	53.0	769	268	514	1173	1619	504	696	0.0371	0.594
54.0	783	55.0	798	270	518	1185	1605	509	690	0.0356	0.570
56.0	812	57.0	827	272	522	1197	1591	515	684	0.0343	0.549
58.0	841	59.0	856	274	525	1208	1577	519	678	0.0330	0.529
60.0	870	61.0	885	277	531	1219	1564	524	672	0.0319	0.511
62.0	899	63.0	914	279	534	1230	1551	529	667	0.0308	0.493
64.0	928	65.0	943	281	538	1241	1538	534	661	0.0297	0.476
66.0	957	67.0	972	283	541	1251	1525	538	656	0.0288	0.461
68.0	986	69.0	1001	285	545	1262	1512	543	650	0.0278	0.445
70.0	1015	71.0	1030	287	549	1272	1499	547	644	0.0270	0.432
72.0	1044	73.0	1059	289	552	1283	1486	552	639	0.0261	0.418
74.0	1073	75.0	1088	291	556	1293	1473	556	633	0.0253	0.405
76.0	1102	77.0	1117	292	559	1303	1460	560	628	0.0246	0.394
78.0	1131	79.0	1146	294	561	1312	1447	564	622	0.0239	0.383
80.0	1160	81.0	1175	296	565	1322	1435	568	617	0.0232	0.372
82.0	1189	83.0	1204	298	568	1331	1422	572	611	0.0226	0.362
84.0	1218	85.0	1233	299	570	1341	1410	576	606	0.0219	0.351
86.0	1247	87.0	1262	301	574	1350	1398	580	601	0.0213	0.341
88.0	1276	89.0	1291	302	576	1359	1385	584	595	0.0208	0.333
90.0	1305	91.0	1320	304	579	1368	1368	588	590	0.0202	0.324
92.0	1334	93.0	1349	305	581	1377	1360	592	585	0.0197	0.316
94.0	1363	95.0	1378	307	585	1386	1348	596	580	0.0192	0.308
96.0	1392	97.0	1407	309	588	1395	1336	600	574	0.0187	0.300
98.0	1421	99.0	1436	310	590	1404	1323	604	569	0.0183	0.293
100.0	1450	101.0	1465	312	594	1412	1311	607	564	0.0178	0.285
105.0	1523	106.0	1537	315	599	1433	1280	616	550	0.0168	0.269
110.0	1595	111.0	1610	319	606	1454	1249	625	537	0.0158	0.253
115.0	1668	116.0	1683	322	612	1475	1218	634	524	0.0149	0.239
120.0	1741	121.0	1755	325	617	1495	1188	643	511	0.0141	0.226
125.0	1813	126.0	1828	328	622	1515	1157	651	497	0.0133	0.213
130.0 135.0 140.0 145.0 150.0 155.0 160.0 165.0 170.0	1886 1958 2031 2103 2176 2248 2321 2393 2466	131.0 136.0 141.0 146.0 151.0 156.0 161.0 166.0 171.0	1900 1973 2045 2118 2190 2263 2335 2408 2480	331 334 337 340 343 345 348 350 353	628 633 639 644 649 653 658 662 667	1535 1555 1575 1595 1614 1634 1654 1674 1694	1125 1093 1060 1027 994 960 925 888 850	660 668 677 686 694 702 711 720 728	484 470 456 442 427 413 398 382 365	0.0126 0.0120 0.0114 0.0108 0.0102 0.00972 0.00922 0.00875 0.00829	0.202 0.192 0.183 0.173 0.163 0.156 0.148 0.140 0.133 0.126
175.0	2538	176.0	2553	355	671	1715	811	737	349	0.00785	0.126
180.0	2611	181.0	2625	357	675	1736	769	746	331	0.00743	0.119
185.0	2683	186.0	2698	360	680	1759	726	756	312	0.00701	0.112
190.0	2756	191.0	2770	362	684	1782	679	766	292	0.00660	0.106
195.0	2828	196.0	2843	364	687	1806	628	776	270	0.00619	0.0992
200.0	2901	201.0	2915	366	691	1833	562	788	242	0.00577	0.0924

14.5 psi = 1 bar

EN Material D	esignation	Old Mate	erial Designation (DIN)	ASTM	
Number	Symbol	Number	Symbol	equivalent1)	Material
1.0038	235JRG2	1.0038	RSt 37-2	A284-B	Constructional steel
1.0315	P235G2TH	1.0315	ST 37.8	-	Constructional steel
1.0345	P235GH	1.0345	ST 35.8 (HI)	A285-CA	High-quality steel (structural steel)
1.0460	P250GH	1.0460	C22.8	A105	Forged steel, unalloyed (carbon steel)
1.0619	GP240GH	1.0619	GS-C 25	A216-WCB	Cast steel (carbon steel)
1.4006	X12Cr13	1.4006	X10 Cr 13	A182-F6A	Chromium steel
1.4008	GX7CrNiMo12-1	1.4008	G-X 8 CrNi 13	_	Cast stainless steel
1.4021	X20Cr13	1.4021	X20 Cr 13	AISI 420	Chromium steel
1.4027	GX20Cr14	1.4027	G-X 20 Cr 14	_	(Cast) chromium steel
1.4107	GX8CrNi12	1.4107	G-X 8 CrNi 12	A217-CA15	Chromium steel
1.4301	X5CrNi18-10	1.4301	X5 CrNi 18 10	A182-F304	Forged stainless steel, austenitic
1.4308	GX5CrNi19-10	1.4308	G-X 6CrNi 18 9	A351-CF8	Cast stainless steel, austenitic
1.4317	GX4CrNi13-4	_	-	A743 CA6NM	Cast stainless steel
1.4404	X2CrNiMo17-12-2	1.4404	X2CrNiMo17132	A182 F316L	Forged stainless steel, austenitic
1.4408	GX5CrNiMo19-11-2	1.4408	G-X 6CrNiMo 18 10	A351-CF8M	Cast stainless steel, austenitic
1.4435	X2CrNiMo18-14-3	1.4435	X2 CrNiMo 18 14 3	AISI 316L	Stainless steel, forged, austenitic
1.4541	X6CrNiTi18-10	1.4433	X6 CrNiTi 18 10	AISI STOL	Forged stainless steel, austenitic
1.4550	X6CrNiNb18-10	1.4550	X6 CrNiNb 18 10	A182-F347	Forged stainless steel, austenitic
1.4552	GX5CrNiNb19-11	1.4552	G-X 5 CrNiNb 18 9	A351-CF8C	Cast stainless steel, austenitic
1.4571	X6CrNiMoTi17-12-2	1.4571	X6 CrNiMoTi 17 12 2	AISI 316Ti	Forged stainless steel, austenitic
1.4581	GX5CrNiMoNb19-11-2	1.4581	G-X 5 CrNiMoNb 18 10	AIGI GTOTI	Cast stainless steel, austenitic
1.4901	X10CrWoMoVNb9-2	1.4301	G-X 3 CHVIIVIOND TO TO	A182-F92	Forged steel, highly heat resistant
1.4903	X10CrMoVNb9-2	1.4903	X10 CrMoVNb 91	A182-F91	
1.4922				A102-F91	Forged steel, highly heat resistant
	X20 CrMo V11-1	1.4922	X20 CrMo V12 1	_	Forged steel, heat resistant
1.4923	X22CrMoV12-1	1.4923	X22 CrMo V12 1	-	Forged steel, heat resistant
1.4980	X6NiCrTiMoVB25-15-2	1.4980	X5NiCrTi 26 15	_	Forged steel, heat resistent
1.4496	X7 CrNiMo BNb 16-16 16Mo3	1.4986 1.5415	X8 CrNiMo BNb 16 16	A100 F1	Forged steel, heat resistant
1.5415			15 Mo 3	A182-F1	Forged steel, heat resistant
1.5419	G20Mo5	1.5419	GS-22 Mo 4	A217-WC1	Cast steel, heat resistant
1.7225	42CrMo4	1.7225	42CrMo4	A193-B7	Forged steel, heat resistant
1.7335	13CrMo4-5	1.7335	13 CrMo 4 4	A182-F12-2	Forged steel, heat resistant
1.7357	G17CrMo5-5	1.7357	GS-17 CrMo 5 5	A217-WC6	Cast steel, heat resistant
1.7380	10CrMo9-10	1.7380	10 CrMo 9 10	A182 F22-3	Forged steel, heat resistant
1.7383	11CrMo9-10	_	-	A182 F22-3	Forged steel, heat resistant
1.7709	21CrMoV 5-7	1.7709	21CrMoV 5 7	-	Forged steel, heat resistent
2.4600	Hastelloy B-3	2.4600	NiMo 29Cr	B335/564	Hastelloy B
2.4610	NiMo 16Cr 16Ti	2.4610	NiMo 16Cr 16Ti	B574	Hastelloy C
2.4632	Nimonic 90	2.4632	NiCr20 Co18Ti	_	Nimonic 90
2.4669	Inconel X750	2.4669	NiCr15 Fe7 TiAL	B637, NACE MR-01-75	Inconel X750
3.7035	Ti 2	3.7035	-	B348/381	Titan
5.1301 (EN-JL 1040)	EN-GJL-250	0.6025	GG-25	A126-B	Grey cast iron
5.3103 (EN-JS 1025)	EN-GJS-400-18-LT	0.7043	GGG-40.3	A395	S. G. (ductile) iron
5.3106 (EN-JS 1030)	EN-GJS-400-15	0.7040	GGG-40	A536 60-40-18	S. G. (ductile) iron to AD 2000 A4/W3/2
5.4202 (EN-JM 1030)	EN-GJMW-400-5	0.8040	GTW-40	_	S. G. (ductile) iron
(EN-JS 1049) ²)	(EN-GJS-400-18-U-LT)	0.7043	GGG-40.3	A395	Whiteheart malleable cast iron
CW608N	CuZn 38 Pb 2	2.0371	CuZN 38 Pb 1.5 (MS60)	_	Hot-pressed brass
CW614N	CuZn 39 Pb 3	2.0401	CuZn 39 Pb 3	-	Brass
CW617N	Cu Zn 40 Pb 2	2.0402	CuZn 40 Pb 2	-	Brass
CW710R	CuZn 35 Ni3Mn2Al Pb	2.0540	CuZn 35 Ni 2	-	Special brass
CW718R	CuZn 39 Mn1Al Pb Si	2.0561	CuZn 40 Al 1	-	Special brass
CC332G	CuAl10Ni3Fe2-C	2.0970.01	G-CuAl 9 Ni	-	Bronze
CC480K-GS	CuSn10-Cu	2.1050.01	G-CuSn 10	_	Bronze
CC483K-GS	CuSn12-C	2.1052.04	GC-CuSn 12	_	Bronze

¹⁾ Physical and chemical properties comply with DIN grade. ASTM nearest equivalent grade is stated for guidance only.

²) Replaced by 5.3103

Raised Faces at a glance - Comparison Flange Standard DIN with EN 1092-1 old (DIN) new (EN 1092-1) Admissible Admissible Remark Raised Raised Designation Designation tolerance tolerance face face for roughness for roughness С Standard up to PN 40 N11/N10 ./. Form C (old) is replaced by form B1 (new) N9/N8 N10/N8 D B1 Standard up to PN 40 Like form D but with def. groove Ε Standard up to PN 63 N8/N7 B2 Standard up to PN 63 N8/N6 Different tolerance for roughness F N9/N8 С N8/N6 Tongue Tongue Tongue heights do not match! N Groove N9/N8 D Groove N8/N6 Groove depths do not match! Male face V Male face N11/N10 Ε N10/N8 Heights of male faces do not match! R Female face N11/N10 F Female face N10/N8 Heights of female faces do not match! V14 Male face with turned groove N11/N10 Н N8/N6 Dimensions identical 0-ring groove R14 Female face to V14 N11/N10 G 0-ring for male face N8/N6 Dimensions identical L Turned groove with convex seal N6 ./. Bevel with welded N8/N7 M ./. diaphragm seal

Since some flange faces are not interchangeable with the associated DIN versions please state the standard and the form of the face.

Example: BK 45 DN 20 PN 40 flanged to DIN 2635 form D [standard flat face, roughness $Ra = 3.2 - 6.3 \mu m$ (N8/N9)]

or: RK 16A DN 65 PN 40 for flange to EN 1092-1 form D (groove/groove face)

Roughness Ch	naracteristics
--------------	----------------

Roughness	Ra	Rz	Rt	CLA µ"		
class (old)	[µm]	[µm]	[µm]	[µin]		
N1	0.025	0.22 - 0.30	0.24 - 0.40	1		
N2	0.05	0.45 - 0.60	0.49 - 0.80	2		
N3	0.1	0.8 - 1.1	0.85 - 1.45	4		
N4	0.2	1.0 - 1.8	1.10 - 2.40	8		
N5	0.4	1.6 - 2.8	1.75 - 3.60	16		
N6	0.8	3.0 - 4.8	3.2 - 6.0	32		
N7	1.6	5.9 - 8.0	6.3 - 10	63		
N8	3.2	12.0 - 16.0	13.0 - 19.5	125		
N9	6.3	23 - 32	25 - 38	250		
N10	12.5	46 - 57	48 - 68	500		
N11	25	90 - 110	95 - 130	1000		
N12	50	160 - 220	190 - 250	2000		

Definition of frequently used abbreviations for valves & steam traps

PN, Class	Pressure class acc. to EN, ASME body of rules
PMA	Max. allowable pressure that pressure-bearing equipment can withstand
TMA	Max. allowable temperature that pressure-bearing equipment can withstand
p/T	Maximum pressure as a function of temperature that pressure-bearing equipment can withstand
ΔΡ	Operating differential pressure
ΔPMX	Maximum differential pressure (difference between operating pressure and operating back pressure)
TMO	Maximum operating temperature for which the operation of the equipment is guaranteed
PM0	Maximum operating pressure for which the operation of the equipment is guaranteed
PMOB	Maximum operating backpressure for which the operation of the equipment is guaranteed
P0	Operating pressure, measured at the valve / trap inlet
TO	Operating temperature, measured at the valve / trap inlet
PS	Maximum service pressure
TS	Maximum service temperature

Designation	Туре	Product Range	Page
Air trap	UNA 14 P	A1	26
Air/steam drier/purifier (steam separator)	TP, TD	С	171
Ball valve	GBV	A4	91
Ball-float steam trap	UNA	A1	10 - 16
Blowdown receiver (mixing cooler)	VDM	С	169
Blowdown system, programme-controlled	TA	В	147 - 148
Check valve	NAF-Check	A2	64 - 65
Check valve, dual-plate	BB	A2	55 - 59, 67
Condensate dampening pot	ED	С	170
Condensate drain valve	AK	A1	21 - 22
Condensate lifter	UNA 25 PS, UNA 25 PK	A1	27
Condensate pumps	CR, CRN, ASK	С	_
Condensate recovery and return system (open & closed types)	SDL / SDS	С	159 - 160
Condesate recovery and return system	Quick CC	С	158
Conductivity controllers	LRR	В	137 - 143
Conductivity electrodes	LRG	В	137 - 143
Conductivity switches	LRS	В	140 - 143
Connecting kit	KIT	A1	35
Continuous blowdown valve, with electric actuator	BAE	В	145 - 146
Continuous blowdown valve, without actuator	BA	В	145 - 146
Control terminal & display unit	URB	В	112 - 113
Control valve	GCV, ZK	A4	80 - 85
Control valve	ZK	A4	81 - 85
Controller (universal)	KS 92	В	_
Cooling water control valve, Gestramat	CW	A4	70 - 71
Deaerator dome	NDR	C	-
Desuperheater, water bath	KD	C	163
Digital indiactor	GIA	В	141
Display unit for process data	SPECTORcontrol II	В	114 - 115
Draining module	QuickEM, QuickEM-Control	A1	31 - 33
Dual-plate check valve	BB	A2	55 - 59, 67
Feedwater tank	SW	C	166
Filter/regulator	FRS	0	8
Flash vessel systems	VD	C	168
Flowrate calculator	SPECTORcontrol Flow	В	154
Gestramat, cooling water control valve	CW	A4	70 - 71
Gravity circulation check	SB0	A2	41
Heat exchanger unit	GESTRAheat	C	165
High-capacity steam trap		A1	21 - 22
	TK 23, TK 24 EK	C	163
Injection cooler Intermittent blowdown valve with pneumatic actuator	MPA	В	149 - 150
Intermittent blowdown valve with pheumatic actuator Intermittent blowdown valve without actuator	PA PA	В	149 - 150
		+	
Isolating valve	GAV	A8	89 - 90, 92
Kalorimat, return temperature control valve	BW AMD 1	A4	72 - 73
LED analog display	MB 1	В	110 110 100 100
Level detection Connect Bus Compact	NRR	В	112 - 113, 122 - 123
Level detection: Connect, Bus, Compact	NRG, NRGS, NRGT	В	118 - 119
Level electrodes/probes	NRG	В	110 - 125
Level limiter	NRG	В	110 - 125
Level pots for electrodes	MF	В	126 - 127, 144

Designation	Туре	Product Range	Page
Level switch	NRS	В	112 - 113, 124 - 125
Level transmitter	NRT	В	_
Lift restriction (stroke limiter)	Lift restriction RK	A2	40
Manifold	GMF	A1	34
Monitoring and testing of steam traps	VK, VKE, VKP, VKP 42 plus, VKP 42 Ex	A1	29 - 30
Monitoring unit	SRL	В	126 - 127
Non-return valve	SRK	A1	19 - 20
Non-return valves	RK	A2	42 - 54
Oil & turbidity detector	OR	В	151 - 152
Dil detector & alarm	ORGS	В	153
Plant monitoring	SPECTORsmart	В	95
Pressure switch	DSH, DSL, DSF, 65-1K Manocomb	В	96, 98, 103, 105
Pressure transducer	CK	В	-
Pressure transmitter	DRT	В	96, 98
Pressure-mainting valve, self-acting	5610	A4	76
Pressure-reducing valve, self-acting	5801	A4	75
Pump controls	NRSP	В	124 - 125
Pump trap	UNA 25 PK	A1	27
Radar probe	705	В	122 - 123
Return temperature control valve, Kalorimat	BW	A4	72 - 73
Safety control unit	URS	В	132
Safety power supply unit	Sitop	В	_
Safety valve	GSV	A6	86
Sample cooler	PK	С	-
Screwed non-return valve	MB	A2	42 - 43
Self-acting pressure-maintaing valve	5610	A4	76
Self-acting pressure-reducing valve	5801	A4	75
Self-acting temperature controller	Clorius	A4	77 - 79
Sightglass	VK, GSG	A1	29
SIL (Safety Integrity Level)	NRG 16-50, NRS 1-50	В	118 - 119
Softcontrol Data	Softcontrol Data	В	153
Solenoid valves	8	C	_
Steam deaerator	BK, MK	A1	6 – 9
Steam drier/purifier	TP	C	171
Steam flowrate calculator	SPECTORcontrol Flow	В	154
Steam regenerator	GRDE	С	164
Steam separator, steam drier/purifier	TD	С	171
Steam trap for large condensate flowrate	GK 11/21	A1	21 - 22
Steam trap for low pressure installations	MK20	A1	21 - 22
Steam trap for SIP applications, Steriline	SMK	A1	19 - 20
Steam trap for universal connector	BK 36A/7, MK 36A/7., DK 36A/7	A1	23
Steam trap monitoring	VK, VKE, VKP, VKP 42 plus	A1	29 - 30
Steam trap with ajdustable discharge temperature	UBK	A1	21 - 22
Steam trap with Duo stainless steel (bimetallic) regulator	BK	A1	6 – 7
Steam trap with membrance capsule	MK	A1	8 – 9
Steam-powered condensate return unit	KH, FPS	C	161 - 162
Steriline	SMK	A1	19 - 20
Stop valve	GAV	A8	89 - 90, 92
<u>'</u>	GSF, SZ	A7	87 - 88
Strainer	13F 5/		

Designation	Туре	Product Range	Page
Swing check valve	WB	A2	62 - 63
Temperature alarm	TRS	В	134 - 135
Temperature controller, self-acting	Clorius	A4	77 - 79
Temperature limiter	TRS	В	134 - 135
Temperature preamplifier	TRV	В	132 - 133
Temperature sensor	TRG	В	132 - 135
Test chamber for steam trap monitoring	VKE	A1	29 - 30
Thermodynamic steam trap	DK	A1	17 - 18
Thermostatic steam traps	BK, MK, SMK,TK	A1	6 – 9, 19 - 22
Trap testing unit	NRA	A1	30
TRAPtest-Portal	VKP 42, VKP 42 Ex	A1	30
Universal connector unit	TS, UC, UCY	A1	24 - 25
Universal control terminal & display	URB	В	112 - 113
Universal controller	KS 92	В	-
Vapophone	VKP 10	A1	30
Vaposcope	VK	A1	29
Vortex flowmeter	84 W-U	В	154
Water bath desuperheater	KD	С	163
Water level indicator (sightglass)	VK, GSG	С	29 - 30

Туре	Designation	Product Range	Page
AK	Condensate drain valve	A1	21 - 22
BA BA	Continuous blowdown valve, without actuator	В	145 - 146
BAE	Continuous blowdown valve, without actuator Continuous blowdown valve, with electric actuator	В	145 - 146
BB	Dual-plate check valve	A2	55 - 59, 67
BB	Check valve, dual-plate	A2	55 - 59, 67
BK	Steam trap with Duo stainless steel (bimetallic) regulator	A2 A1	6 – 7
BK 36A/7, MK 36A/7., DK 36A/7	Steam trap for universal connector	A1 A1	23
BK, MK	Steam deaerator	A1 A1	6 – 9
	Thermostatic steam traps	A1 A1	6 – 9, 19 - 22
BK, MK, SMK,TK BW	Return temperature control valve, Kalorimat	A1 A4	72 - 73
BW	Kalorimat, return temperature control valve	A4 A4	72 - 73
CB	Swing check valve	A2	60 - 61
CK		B B	00 - 01
	Pressure transducer		77 - 79
Clorius	Self-acting temperature controller	A4 A4	
Clorius	Temperature controller, self-acting	C	77 - 79 _
CR, CRN, ASK	Condensate pumps Gestramat, cooling water control valve		70 - 71
CW	Cooling water control valve Gestramat	A4 A4	70 - 71
DK	Thermodynamic steam trap		-
	2 1	A1 B	17 - 18
DRT	Pressure transmitter		96, 98
DSH, DSL, DSF, 65-1K Manocomb	Pressure switch	В	96, 98, 103, 105
ED E1/	Condensate dampening pot	C	170
EK ERG	Injection cooler	С	163
FRS	Filter/regulator	40	8
GAV	Isolating valve	A8	89 - 90, 92
GAV	Stop valve	A8	89 - 90, 92
GBV	Ball valve	A4	91
GCV, ZK	Control valve	A4	80 - 85
GESTRAheat	Heat exchanger unit	C	165
GIA	Digital indiactor	В	141
GK 11/21	Steam trap for large condensate flowrate	A1	21 - 22
GMF	Manifold	A1	34
GRDE	Steam regenerator	C	164
GSF, SZ	Strainer	A7	87 - 88
GSV	Safety valve	A6	86
Lift restriction RK	Lift restriction (stroke limiter)	A2	40
KD	Desuperheater, water bath	C	163
KD KD	Water bath desuperheater	C	163
KH, FPS	Steam-powered condensate return unit	C	161 - 162
KIT	Connecting kit	A1	35
KS 92	Universal controller	В	-
KS 92	Controller (universal)	В	107 110
LRG	Conductivity electrodes	В	137 - 143
LRR	Conductivity controllers	В	137 - 143
LRS	Conductivity switches	В	140 - 143
MB	Screwed non-return valve	A2	42 - 43
MB 1	LED analog display	В	-
MF	Level pots for electrodes	В	126 - 127, 144
MK	Steam trap with membrance capsule	A1	8 – 9
MK20	Steam trap for low pressure installations	A1	21 - 22
MPA	Intermittent blowdown valve with pneumatic actuator	В	149 - 150
NAF-Check	Check valve	A2	64 - 65
NDR	Deaerator dome	C	-
NRA	Trap testing unit	A1	30

Туре	Designation	Product Range	Page
NRG	Level limiter	В	110 - 125
IRG	Level electrodes/probes	В	110 - 125
NRG 16-50, NRS 1-50	SIL (Safety Integrity Level)	В	118 - 119
IRG, NRGS, NRGT	Level detection: Connect, Bus, Compact	В	118 - 119
NRR	Level controller	В	112 - 113, 122 - 123
NRS	Level switch	В	112 - 113, 124 - 125
IRSP	Pump controls	В	124 - 125
NRT	Level transmitter	В	-
DR .	Oil & turbidity detector	В	151 - 152
DRGS	Oil detector & alarm	В	153
PA	Intermittent blowdown valve without actuator	В	149 - 150
PK	Sample cooler	С	_
Quick CC	Condesate recovery and return system	С	158
QuickEM, QuickEM-Control	Draining module	A1	31 - 33
RK	Non-return valves	A2	42 - 54
SBO	Gravity circulation check	A2	41
DL / SDS	Condensate recovery and return system (open & closed types)	C	159 - 160
Sitop	Safety power supply unit	В	-
SMK	Steam trap for SIP applications, Steriline	A1	19 - 20
SMK	Steriline	A1	19 - 20
Softcontrol Data	Softcontrol Data	В	153
SPECTORcontrol Flow	Steam flowrate calculator	В	154
PECTORcontrol Flow	Flowrate calculator	В	154
PECTORcontrol II	Display unit for process data	В	114 - 115
		В	95
SPECTOR <i>smart</i>	Plant monitoring		19 - 20
SRK	Non-return valve	A1	
SRL	Monitoring unit	В	126 - 127
SW	Feedwater tank	C	166
Ä	Blowdown system, programme-controlled	В	147 - 148
D	Steam separator, steam drier/purifier	C	171
TK 23, TK 24	High-capacity steam trap	A1	21 - 22
P 	Steam drier/purifier	C	171
TP, TD	Air/steam drier/purifier (steam separator)	C	171
TRG	Temperature sensor	В	132 - 135
TRS	Temperature limiter	В	134 - 135
TRS	Temperature alarm	В	134 - 135
TRV	Temperature preamplifier	В	132 - 133
S, UC, UCY	Universal connector unit	A1	24 - 25
IBK	Steam trap with ajdustable discharge temperature	A1	21 - 22
JNA	Ball-float steam trap	A1	10 - 16
JNA 14 P	Air trap	A1	26
INA 25 PK	Pump trap	A1	27
INA 25 PS, UNA 25 PK	Condensate lifter	A1	27
IRB	Control terminal & display unit	В	112 - 113
IRB	Universal control terminal & display	В	112 - 113
IRS	Safety control unit	В	132
'D	Flash vessel systems	С	168
/DM	Blowdown receiver (mixing cooler)	С	169
K	Vaposcope	A1	29
/K, GSG	Sightglass	A1	29
K, GSG	Water level indicator (sightglass)	С	29 - 30
/K, VKE, VKP, VKP 42 plus	Steam trap monitoring	A1	29 - 30
/K, VKE, VKP, VKP 42 plus, VKP 42 Ex	Monitoring and testing of steam traps	A1	29 - 30

Туре	Designation	Product Range	Page
VKE	Test chamber for steam trap monitoring	A1	29 - 30
VKP 10	Vapophone	A1	30
VKP 42, VKP 42 Ex	TRAP <i>test</i> -Portal	A1	30
WB	Swing check valve	A2	62 - 63
zĸ	Control valve	A4	81 - 85
5610	Self-acting pressure-maintaing valve	A4	76
5610	Pressure-mainting valve, self-acting	A4	76
5801	Self-acting pressure-reducing valve	A4	75
5801	Pressure-reducing valve, self-acting	A4	75
705	Radar probe	В	122 - 123
8	Solenoid valves	С	-
84 W-U	Vortex flowmeter	В	154

Note: Responsible care has been taken in preparing this illustrated catalogue. GESTRA reserves the right to make corrections and changes. Illustrations in our printed literature are liable to alteration and are not intended to be binding. We also reserve the unrestricted property and copyright in all estimates, drawings or related documents, which must not be made available to third parties. Revised 2023

