

ZK 210/02, DN 50 (2") with butt-weld ends

Control Valve with Radial Stage Nozzle

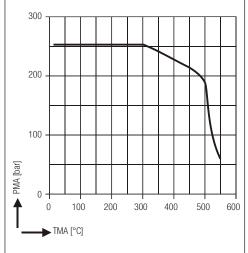
ZK 210 PN 250 DN 25, 50, 80 (1", 2", 3")

Description

Control valve for operation at high differential pressures.

Application, for example, in industrial plants and power

Application, for example, in industrial plants and power stations as


- Injection-cooling valve
- Warm-up valve
- Drain valve
- Continuous blowdown valve
- Feedwater control valve
- Leak-off valve
- Steam control valve

The pressure drop is decreased in the radial stage nozzle in several stages, so that the flow velocity is reduced leading to a considerable reduction in wear and noise.

Straight-through valve (DN 25, 50 (1", 2")) or angle valve (DN 80 (3")) with yoke, spindle with plug and radial stage nozzle. Internals (incl. seat) completely exchangeable. Leak rate A according EN12266-1

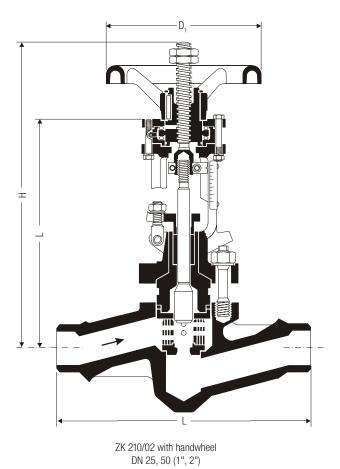
Pressure/Temperature Rating						
PMA (Maximum allowable pressure)	[barg]	250	217	54		
	[psig]	3625	3145	785		
TMA (Maximum allowable temperature)	[°C]	300	450	550		
	[°F]	572	842	1022		
ΔPMX (Maximum differential pressure)	[barg] [psig]	' '				

Differential pressure = **inlet** pressure minus **outlet** pressure

Materials	
Body	forged alloy steel 13 CrMo 4 4 (1.7335)*)
Valve seat	3 stages: X 90 CrMoV 18 (1.4112) 4/5 stages: X39CrMo17-1 (1.4122)
Valve spindle and plug	X39CrMo17-1 (1.4122)

*) On request, at extra cost butt-weld ends of other materials and dimensions by welding of pipe ends.

The following actuators can be fitted to the valve:


- 1. ZK 210/02
 - Manual operation, convertible for electric rotary actuators
- 2. ZK 210/13
- Electric linear actuator 3. ZK 210/14 **(standard)**
 - Design with insert bush F10 B1 for fitting an electric rotary actuator or a handwheel.
- ZK 210/20
 Pneumatic diaphragm actuator

Connections

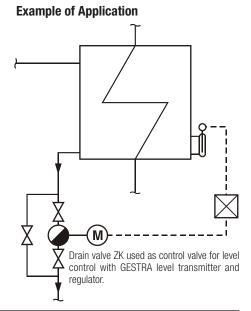
Butt-weld ends (standard)

Special end connections on request.

Dimensions

ZK 210/14,
DN 80 (3")
with electric rotary actuator

DN	[mm] [in]		25 1	50 2	80 3
Dimensions in mm	L H H ₁ D ₁		230 384 287 200	300 455 345 200	225 535 375 320
Butt-weld ends for pipe			33.7x3.6	60.3 x 6.3	114.3 x 11
Approx. weight for design ZK 210/14	[kg] handwheel [[kg]	12 1.6	25 1.6	60 6

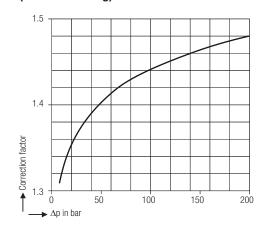


ZK 210, DN 50 (2") 5 stages

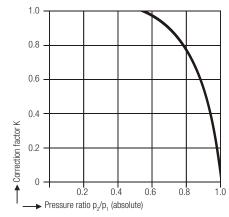
k_{vs} values Selection of Actuator

DN	Nozzle*)	Characteristic	K _{vs}		Valve stroke [mm]	Rev./ stroke	Max. admiss. torque for opening/ closing [Nm]	Type/size of actuator DIN ISO 5210	
25 (1")	3 stages	linear	0.8	1.5	2.3	18	3.6	20/25	B1-F10
25(1")	3 stages	equal-percentage	0.8	1.5	2.3	18	3.6	20/25	B1-F10
25(1")	4 stages	linear	0.5		13	2.6	20/25	B1-F10	
50(2")	3 stages	linear	3.3	6.5	10	35	7	30/60	B1-F10
50(2")	3 stages	equal-percentage	3	6	9	35	7	30/60	B1-F10
50(2")	5 stages	linear		2		23	4.6	30/60	B1-F10
80(3")	3 stages	linear	9.5	18	28	50	10	80/120	B1-F10
80(3")	3 stages	equal-percentage	8.5	18	25	50	10	80/120	B1-F10
80 (3")	5 stages	linear		5		35	7	80/120	B1-F10

^{*) 3} stages: Δpmax = 100 bar (1450 psi) (standard) 4/5 stages: Δpmax = 180 bar (2610 psi)


Calculation of Required k, value*)

- For water flowrates within temperature ranges where flashing because of pressure drop is not to be expected (e. g. leak-off and injection-cooling valves) the calculated k_v value has to be multiplied by a correction factor taken from the chart below due to the successive expansion. The chart includes a safety factor of 1.2.


Pressure drop	k _v	for liquids	for gas, temperature-corrected	for vapours	for saturated and wet steam
$ \left(\begin{array}{c} \Delta p < \underline{p_1} \\ 2 \end{array}\right) $ $ \left(\begin{array}{c} p_2 > \underline{p_1} \\ 2 \end{array}\right) $	k,	$=$ \dot{V} $\sqrt{\rho_1}$ $=$ \dot{m}	$= \frac{\dot{V}_{N}}{514} \sqrt{\frac{\rho_{N} \cdot T_{1}}{\Delta p \cdot p_{2}}}$	$=\frac{\dot{m}}{31.6} \sqrt{\frac{v}{\Delta p}}$	$=\frac{\dot{m}}{31.6} \sqrt{\frac{v \cdot x}{\Delta p}}$
$ \frac{\Delta p > \frac{p_1}{2}}{\left(\frac{p_2}{2} < \frac{p_1}{2}\right)} $	k,	31.6 V Δp 31.6 V ρ ₁ ·Δ	$\boxed{ = \underbrace{2 \dot{V}_{N}}_{514 \cdot p_{1}} \sqrt{ \rho_{N} \cdot T_{1}} }$	$=\frac{\dot{m}}{31.6} \sqrt{\frac{2 \text{ v}}{p_1}}$	$=\frac{\dot{m}}{31.6} \sqrt{\frac{v \cdot x \cdot 2}{p_1}}$

*) Conversion Factors: $C_{_{V}}$ (U.S.) = 1.16 \cdot $k_{_{V}}$ (U.S.) = 0.98 \cdot $k_{_{V}}$

Correction factor for water flowrates (without flashing)

Backpressure chart

Nomenclature:

Valve flow coefficient for fully open valve

within control range

		[,]
Ÿ	Flowrate	[m³/h]
m	Flowrate	[kg/h]
\dot{V}_N	Volume flowrate for gases at standard state (0°C, 1013 mbar)	[m ³ /h]
p ₁	Upstream pressure	[bar a]
p_2	Downstream pressure	[bar a]
Δρ	Pressure drop p ₁ -p ₂	[bar]
ρ_1	Density of fluid with operating condition at T_1 and p_2	[kg/m³]
ρ_{N}	Density of gases at standard state (0 °C, 1013 mbar)	[kg/m³]
V	$\begin{array}{l} \text{Specific steam volume at} \\ T_{_1} \text{and } p_{_2} \text{or} - \text{if} \\ \Delta p \ > \ \frac{p_{_1}}{2} \ - \ \ \text{at} \frac{p_{_1}}{2} \end{array}$	[m³/kg]
T ₁	Absolute inlet temperature of fluid	[K]
Х	Content of dry saturated steam in wet steam $(0 < x \le 1)$	

[m³/h]

Control Valve with Radial Stage Nozzle

ZK 210 PN 250 DN 25, 50, 80 (1", 2", 3")

Capacity Charts

The charts indicate the maximum capacities of hot and cold water (condensate) the valve can discharge in continuous operation with the spindle in the utmost control position and linear characteristic.

Within their control range the valves (in all sizes) have a linear characteristic. For special operating conditions the adjustment of the radial stage nozzle can be modified to obtain different $k_{\mbox{\tiny NS}}$ values and consequently flowrates varying from those indicated in the charts opposite. The linear characteristic is, however, maintained.

It is also possible to change the lift-flowrate characteristic from linear to equal-percentage by repositioning nozzle rings.

Order and Enquiry Specifications

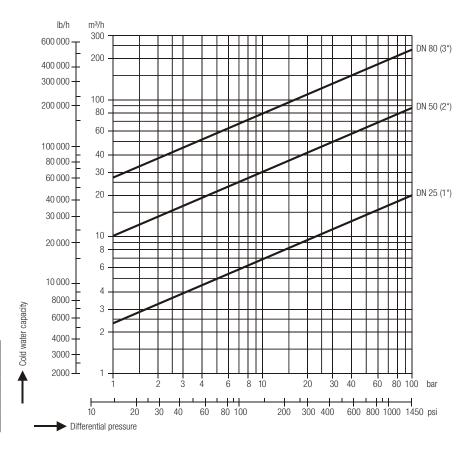
GESTRA Control valve with radial stage nozzle ZK 210 Design data: $p = \dots$ barg, $t = \dots$ °C or PN Operation: load conditions (1 to 3)

	1	2	3
p ₁ [bara]	•		
t ₁ [°C]			
p ₂ [bara]			
M [kg/h]			

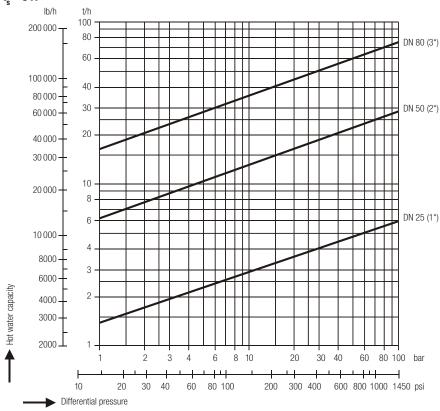
Please enter data.

Fluid:			
Actuation	n: Electric ON / OFF or MODUL Voltage/Hz	ATING CONTROL	. ,
	Pneumatic Spring to open: Spring to close: Handwheel: Positioner:		

Inspection & Certification


Documentation regarding material tests and in-house examination with inspection certificate to EN 10204-3.1 or EN 10204-3.2 available at extra cost.

Please state the inspection and certification requirements when inquiring or ordering. After supply of the equipment certification cannot be established.


Charges and extent of the above mentioned certificates as well as the different tests confirmed therein are listed in our price list "Test and Inspection Charges for Standard Equipment"

For other test certificates please consult us.

Cold water

Hot water t = 5 K

Supply in accordance with our general terms of business.

GESTRA AG

Münchener Straße 77, 28215 Bremen, Germany Telefon +49 421 3503-0, Telefax +49 421 3503-393 E-mail info@de.gestra.com, Web www.gestra.de

